You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-cuda-buffer.c

1358 lines
42 KiB
C

/* Copyright (C) 2007-2012 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Anoop Saldanha <anoopsaldanha@gmail.com>
*
* API has be introduced to allow buffering of data by multiple writers
* asynronously. The current version only allows sequential reads.
*
* The API works by first registering a couple of buffers, which would
* be sliced and allocated for use by the API to potential writers.
*
* The registration API requires 3 buffers to be registered. The data
* buffer(d_buffer), into which the API buffers data, the pointer buffer
* (p_buffer), which would hold the pointer var instance corresponding to
* its entry in the d_buffer, and the offset buffer(o_buffer), which
* holds an offset entry for the data corresponding to the pointer buffer
* entry.
*
* A writer wishing to write data would be required to obtain a slice
* using CudaBufferGetSlice. Once data has been written to the slice,
* it can report back saying the slice has been written to by setting
* a flag in the slice - SC_ATOMIC_SET(slice->done, 1).
*
* A reader wishing to retrieve the data written by writers, will do
* so using the API call - CudaBufferCullCompletedSlices(). Once data
* has been consumed, the reader would report back using
* CudaBufferReportCulledConsumption() so that resources can be freed
* to be reallocated to other writers.
*/
#ifdef __SC_CUDA_SUPPORT__
#include "suricata-common.h"
#include "suricata.h"
#include "util-atomic.h"
#include "util-pool.h"
#include "util-misc.h"
#include "util-error.h"
#include "util-debug.h"
#include "util-unittest.h"
#include "util-cuda-buffer.h"
/* rotation limit for the buffers. This basically decides at what position
* inside alloced buffer should the API rotate and start using the buffer
* from the start - The right value's from 0.1-1.0. Do note that the
* rotation decision is taken when the culling process takes place.
* Have a look at - CudaBufferCullCompletedSlices */
#define CUDA_BUFFER_BUFFER_ROTATION_LIMIT 0.75
/* The max buffer size that be registered to CudaBufferRegisterNew */
#define CUDA_BUFFER_BUFFER_LIMIT (1 * 1024 * 1024 * 1024)
/* 100,000 * 5 = 500,000 */
#define CUDA_BUFFER_ITEM_LIMIT (100000 * 5)
/* a million slices to be prealloced = 100,000 * 10 */
#define CUDA_BUFFER_SLICE_POOL_PREALLOC (100000 * 10)
/* we store all our slices here */
static Pool *slice_pool = NULL;
/* mutex for the above slice pool */
static SCMutex slice_pool_mutex;
/**
* \brief Used by a consumer to report back(and thus have it freed),
* once it has consumed data returned in the CudaBufferCulledInfo
* instance(obtained from the call to CudaBufferCullCompletedSlices).
*/
void CudaBufferReportCulledConsumption(CudaBufferData *cb_data,
CudaBufferCulledInfo *culled_info)
{
SCMutexLock(&cb_data->m);
if (culled_info->d_buffer_reset) {
cb_data->d_buffer_read = 0;
} else {
if (culled_info->no_of_items != 0) {
cb_data->d_buffer_read = culled_info->d_buffer_start_offset +
culled_info->d_buffer_len;
}
}
if (culled_info->op_buffer_reset) {
cb_data->op_buffer_read = 0;
} else {
if (culled_info->no_of_items != 0) {
cb_data->op_buffer_read += culled_info->no_of_items;
}
}
SCMutexUnlock(&cb_data->m);
}
/**
* \brief Remove slices that are done. "Done" as in worker threads are done
* writing data to it.
*
* \param cb_data Pointer to the CudaBufferData instance.
*/
void CudaBufferCullCompletedSlices(CudaBufferData *cb_data,
CudaBufferCulledInfo *culled_info,
uint32_t size_limit)
{
culled_info->no_of_items = 0;
culled_info->d_buffer_reset = 0;
culled_info->op_buffer_reset = 0;
SCMutexLock(&cb_data->m);
int buffer_reset = 0;
uint32_t d_buffer_write_temp = 0;
uint32_t op_buffer_write_temp = 0;
if ((cb_data->d_buffer_write >=
(cb_data->d_buffer_len * CUDA_BUFFER_BUFFER_ROTATION_LIMIT)) &&
(cb_data->d_buffer_read != 0))
{
SCLogDebug("d_buffer reset");
d_buffer_write_temp = cb_data->d_buffer_write;
cb_data->d_buffer_write = 0;
buffer_reset = 1;
culled_info->d_buffer_reset = 1;
}
/* reset op_buffer */
if ((cb_data->op_buffer_write >=
(cb_data->op_buffer_len * CUDA_BUFFER_BUFFER_ROTATION_LIMIT)) &&
(cb_data->op_buffer_read != 0))
{
SCLogDebug("op_buffer reset");
op_buffer_write_temp = cb_data->op_buffer_write;
cb_data->op_buffer_write = 0;
buffer_reset = 1;
culled_info->op_buffer_reset = 1;
}
CudaBufferSlice *slice_temp = cb_data->slice_head;
CudaBufferSlice *max_culled_slice = NULL;
uint32_t curr_size = 0;
while (slice_temp != NULL) {
if (!SC_ATOMIC_GET(slice_temp->done)) {
SCLogDebug("CudaBuffer waiting on an item to finish");
if (buffer_reset) {
while (!SC_ATOMIC_GET(slice_temp->done))
usleep(1);
} else {
break;
}
}
if (curr_size + (slice_temp->end_offset - slice_temp->start_offset + 1) > size_limit) {
if (buffer_reset) {
cb_data->op_buffer_write = op_buffer_write_temp;
cb_data->d_buffer_write = d_buffer_write_temp;
culled_info->d_buffer_reset = 0;
culled_info->op_buffer_reset = 0;
}
break;
}
max_culled_slice = slice_temp;
curr_size += (slice_temp->end_offset - slice_temp->start_offset + 1);
slice_temp = slice_temp->next;
}
CudaBufferSlice *slice_head = cb_data->slice_head;
if (max_culled_slice != NULL) {
cb_data->slice_head = max_culled_slice->next;
if (max_culled_slice->next == NULL) {
cb_data->slice_tail = NULL;
}
max_culled_slice->next = NULL;
SCMutexUnlock(&cb_data->m);
} else {
SCMutexUnlock(&cb_data->m);
return;
}
/* push out the used slices to the the slice_pool */
SCMutexLock(&slice_pool_mutex);
slice_temp = slice_head;
while (slice_temp != max_culled_slice) {
CudaBufferSlice *tmp = slice_temp->next;
PoolReturn(slice_pool, slice_temp);
culled_info->no_of_items++;
slice_temp = tmp;
}
PoolReturn(slice_pool, slice_temp);
culled_info->no_of_items++;
SCMutexUnlock(&slice_pool_mutex);
SCMutexLock(&cb_data->m);
culled_info->d_buffer_start_offset = slice_head->start_offset;
culled_info->d_buffer_len = (max_culled_slice->end_offset -
slice_head->start_offset + 1);
culled_info->op_buffer_start_offset = cb_data->op_buffer_read;
SCMutexUnlock(&cb_data->m);
return;
}
/**
* \internal
* \brief Adds a slice to the CudaBufferData slice list.
*
* We expect the CudaBufferData instance to be locked.
*
* \param cb_data Pointer to the CudaBufferdata instance.
* \param slice Pointer to the slice to be pushed.
*/
static inline void CudaBufferAppendSlice(CudaBufferData *cb_data, CudaBufferSlice *slice)
{
slice->next = NULL;
if (cb_data->slice_head == NULL) {
cb_data->slice_head = slice;
cb_data->slice_tail = slice;
} else {
cb_data->slice_tail->next = slice;
cb_data->slice_tail = slice;
}
return;
}
/**
* \brief Gets a new buffer slice for a consumer to write to.
*
* All slices returned are aligned to the next 8 byte boundary.
*
* \param cb_data Pointer to the CudaBufferdata instance.
* \param len Length of the slice required.
* \param p Pointer to the var corresponding to the data to store.
*
* \retval slice Pointer to the slice if successful; NULL if unsuccessful.
*/
CudaBufferSlice *CudaBufferGetSlice(CudaBufferData *cb_data, uint32_t len, void *p)
{
#define ALIGN_UP(offset, alignment) (offset) = ((offset) + (alignment) - 1) & ~((alignment) - 1)
SCMutexLock(&slice_pool_mutex);
CudaBufferSlice *slice = PoolGet(slice_pool);
SCMutexUnlock(&slice_pool_mutex);
if (slice == NULL) {
return NULL;
}
SCMutexLock(&cb_data->m);
if (cb_data->d_buffer_write < cb_data->d_buffer_read) {
if (cb_data->d_buffer_write + len >= cb_data->d_buffer_read) {
SCLogInfo("d_buffer full");
SCMutexUnlock(&cb_data->m);
SCMutexLock(&slice_pool_mutex);
PoolReturn(slice_pool, slice);
SCMutexUnlock(&slice_pool_mutex);
return NULL;
}
} else {
if (cb_data->d_buffer_write + len > cb_data->d_buffer_len) {
SCLogInfo("d_buffer limit hit - buffer_len - %"PRIu32,
cb_data->d_buffer_len);
SCMutexUnlock(&cb_data->m);
SCMutexLock(&slice_pool_mutex);
PoolReturn(slice_pool, slice);
SCMutexUnlock(&slice_pool_mutex);
return NULL;
}
}
if (cb_data->op_buffer_write < cb_data->op_buffer_read) {
if (cb_data->op_buffer_write + 1 >= cb_data->op_buffer_read) {
SCLogInfo("op_buffer full");
SCMutexUnlock(&cb_data->m);
SCMutexLock(&slice_pool_mutex);
PoolReturn(slice_pool, slice);
SCMutexUnlock(&slice_pool_mutex);
return NULL;
}
} else {
if (cb_data->op_buffer_write + 1 > cb_data->op_buffer_len) {
SCLogInfo("op_buffer limit hit - buffer_len - %"PRIu32,
cb_data->op_buffer_len);
SCMutexUnlock(&cb_data->m);
SCMutexLock(&slice_pool_mutex);
PoolReturn(slice_pool, slice);
SCMutexUnlock(&slice_pool_mutex);
return NULL;
}
}
slice->start_offset = cb_data->d_buffer_write;
cb_data->d_buffer_write = slice->start_offset + len;
ALIGN_UP(cb_data->d_buffer_write, 8);
slice->end_offset = cb_data->d_buffer_write - 1;
slice->buffer = cb_data->d_buffer;
SC_ATOMIC_SET(slice->done, 0);
CudaBufferAppendSlice(cb_data, slice);
cb_data->no_of_items++;
cb_data->o_buffer[cb_data->op_buffer_write] = slice->start_offset;
cb_data->p_buffer[cb_data->op_buffer_write] = p;
cb_data->op_buffer_write++;
SCMutexUnlock(&cb_data->m);
return slice;
}
void CudaBufferDeRegister(CudaBufferData *cb_data)
{
CudaBufferSlice *slice_temp = cb_data->slice_head;
SCMutexLock(&slice_pool_mutex);
while (slice_temp != NULL) {
CudaBufferSlice *slice_temp_next = slice_temp->next;
PoolReturn(slice_pool, slice_temp);
slice_temp = slice_temp_next;
}
SCMutexUnlock(&slice_pool_mutex);
SCMutexDestroy(&cb_data->m);
SCFree(cb_data);
return;
}
/**
* \brief Registers a new buffer to be handled by the CudaBuffer API.
*
* More on what this API does can be understood from the API
* docs at the start of this file.
*
* \param d_buffer The data buffer to work with.
* \param d_buffer_len Length of d_buffer.
* \param o_buffer The offset buffer.
* \param p_buffer The pointer buffer.
* \param op_buffer_no_of_items Length of o_buffer and p_buffer. Please
* note that both o_buffer and p_buffer
* should be of the same length.
* \param len Length of the buffer to be assigned.
*/
CudaBufferData *CudaBufferRegisterNew(uint8_t *d_buffer, uint32_t d_buffer_len,
uint32_t *o_buffer, void **p_buffer,
uint32_t op_buffer_no_of_items)
{
if (d_buffer_len > CUDA_BUFFER_BUFFER_LIMIT) {
SCLogError(SC_ERR_CUDA_BUFFER_ERROR, "Buffer max limit exceeded. We "
"accept a max limit of %u bytes", CUDA_BUFFER_BUFFER_LIMIT);
return NULL;
}
if ((d_buffer_len % 8) != 0) {
SCLogError(SC_ERR_CUDA_BUFFER_ERROR, "Please specify a buffer length which "
"is a multiple of 8");
return NULL;
}
CudaBufferData *new = SCMalloc(sizeof(CudaBufferData));
if (new == NULL) {
return NULL;
}
memset(new, 0, sizeof(CudaBufferData));
/* payload/data buffer and set its size */
new->d_buffer = d_buffer;
new->d_buffer_len = d_buffer_len;
/* offset buffer and set its size */
new->o_buffer = o_buffer;
new->p_buffer = p_buffer;
/* common to the above 2 malloc'ed buffers */
new->op_buffer_len = op_buffer_no_of_items;
/* used to lock this new instance when it's used */
SCMutexInit(&new->m, NULL);
return new;
}
static void *CudaBufferSlicePoolAlloc(void *null)
{
void *ptr = SCMalloc(sizeof(CudaBufferSlice));
if (ptr == NULL)
return NULL;
memset(ptr, 0, sizeof(CudaBufferSlice));
SC_ATOMIC_INIT(((CudaBufferSlice *)ptr)->done);
return ptr;
}
static int CudaBufferSlicePoolInit(void *data, void *init_data)
{
SC_ATOMIC_INIT(((CudaBufferSlice *)data)->done);
return 1;
}
/* disabled to reflect the changes made in PoolInit */
#if 0
static void CudaBufferSlicePoolFree(void *data)
{
SC_ATOMIC_DESTROY(((CudaBufferSlice *)data)->done);
SCFree(data);
return;
}
#endif
static void CudaBufferSlicePoolCleanup(void *data)
{
SC_ATOMIC_DESTROY(((CudaBufferSlice *)data)->done);
return;
}
/**
* \brief Init the API. To be called only once at startup time.
*/
void CudaBufferInit(void)
{
SCMutexInit(&slice_pool_mutex, NULL);
slice_pool = PoolInit(CUDA_BUFFER_SLICE_POOL_PREALLOC,
CUDA_BUFFER_SLICE_POOL_PREALLOC,
sizeof(CudaBufferSlice),
CudaBufferSlicePoolAlloc,
CudaBufferSlicePoolInit,
NULL,
CudaBufferSlicePoolCleanup,
NULL);
if (slice_pool == NULL) {
SCLogError(SC_ERR_POOL_INIT, "CudaBuffer slice_pool is not initialized");
exit(EXIT_FAILURE);
}
return;
}
/****************************Unittests***************************/
#ifdef UNITTESTS
int CudaBufferTest01(void)
{
CudaBufferSlice *slice1, *slice2, *slice3, *slice4, *slice_temp;
int result = 0;
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
/* new slice */
slice1 = CudaBufferGetSlice(data, 8, NULL);
if (slice1->start_offset != 0 || slice1->end_offset != 7 ||
SC_ATOMIC_GET(slice1->done) != 0) {
printf("failure 1\n");
goto end;
}
if (data->d_buffer_write != 8 || data->d_buffer_read != 0 ||
data->op_buffer_write != 1 || data->op_buffer_read != 0 ||
data->no_of_items != 1) {
printf("failure 2\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 3\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 4\n");
goto end;
}
/* new slice */
slice2 = CudaBufferGetSlice(data, 16, NULL);
if (slice2->start_offset != 8 || slice2->end_offset != 23 ||
SC_ATOMIC_GET(slice2->done) != 0) {
printf("failure 5\n");
goto end;
}
if (data->d_buffer_write != 24 || data->d_buffer_read != 0 ||
data->op_buffer_write != 2 || data->op_buffer_read != 0 ||
data->no_of_items != 2) {
printf("failure 6\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 7\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 8 || slice_temp->end_offset != 23 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 8\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 9\n");
goto end;
}
/* new slice */
slice3 = CudaBufferGetSlice(data, 36, NULL);
if (slice3->start_offset != 24 || slice3->end_offset != 63 ||
SC_ATOMIC_GET(slice3->done) != 0) {
printf("failure 10\n");
goto end;
}
if (data->d_buffer_write != 64 || data->d_buffer_read != 0 ||
data->op_buffer_write != 3 || data->op_buffer_read != 0 ||
data->no_of_items != 3) {
printf("failure 11\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 12\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 8 || slice_temp->end_offset != 23 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 13\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 24 || slice_temp->end_offset != 63 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 14\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 15\n");
goto end;
}
slice4 = CudaBufferGetSlice(data, 10, NULL);
if (slice4 != NULL) {
printf("failure 16\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 17\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
int CudaBufferTest02(void)
{
CudaBufferSlice *slice1, *slice2, *slice3, *slice_temp;
int result = 0;
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
slice1 = CudaBufferGetSlice(data, 8, NULL);
slice2 = CudaBufferGetSlice(data, 16, NULL);
if (data->d_buffer_write != 24 || data->d_buffer_read != 0 ||
data->op_buffer_write != 2 || data->op_buffer_read != 0 ||
data->no_of_items != 2) {
printf("failure 1\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 2\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 8 || slice_temp->end_offset != 23 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 3\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 4\n");
goto end;
}
/* culling */
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 0) {
printf("failure 5\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 6\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 8 || slice_temp->end_offset != 23 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 7\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 8\n");
goto end;
}
SC_ATOMIC_SET(slice2->done, 1);
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 0) {
printf("failure 9\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 7 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 10\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 8 || slice_temp->end_offset != 23 ||
SC_ATOMIC_GET(slice_temp->done) != 1) {
printf("failure 11\n");
goto end;
}
if (slice_temp->next != NULL) {
printf("failure 12\n");
goto end;
}
SC_ATOMIC_SET(slice1->done, 1);
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 2) {
printf("failure 13\n");
goto end;
}
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 14\n");
goto end;
}
if (culled_info.d_buffer_start_offset != 0 ||
culled_info.d_buffer_len != 24 ||
culled_info.op_buffer_start_offset != 0 ||
culled_info.d_buffer_reset != 0 || culled_info.op_buffer_reset != 0) {
printf("failure 15\n");
goto end;
}
if (data->d_buffer_write != 24 || data->d_buffer_read != 0 ||
data->op_buffer_write != 2 || data->op_buffer_read != 0 ||
data->no_of_items != 2) {
printf("failure 16\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 24 || data->d_buffer_read != 24 ||
data->op_buffer_write != 2 || data->op_buffer_read != 2 ||
data->no_of_items != 2) {
printf("failure 17\n");
goto end;
}
/* new slice */
slice3 = CudaBufferGetSlice(data, 8, NULL);
if (slice3->start_offset != 24 || slice3->end_offset != 31 ||
SC_ATOMIC_GET(slice3->done) != 0) {
printf("failure 18\n");
goto end;
}
if (data->d_buffer_write != 32 || data->d_buffer_read != 24 ||
data->op_buffer_write != 3 || data->op_buffer_read != 2 ||
data->no_of_items != 3) {
printf("failure 19\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 24 || slice_temp->end_offset != 31 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 20\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp != NULL) {
printf("failure 21\n");
goto end;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 0) {
printf("failure 22\n");
goto end;
}
if (data->d_buffer_write != 32 || data->d_buffer_read != 24 ||
data->op_buffer_write != 3 || data->op_buffer_read != 2 ||
data->no_of_items != 3) {
printf("failure 23\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 24 || slice_temp->end_offset != 31 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 24\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp != NULL) {
printf("failure 25\n");
goto end;
}
/* set done flag */
SC_ATOMIC_SET(slice3->done, 1);
if (slice3->start_offset != 24 || slice3->end_offset != 31 ||
SC_ATOMIC_GET(slice3->done) != 1) {
printf("failure 26\n");
goto end;
}
if (data->d_buffer_write != 32 || data->d_buffer_read != 24 ||
data->op_buffer_write != 3 || data->op_buffer_read != 2 ||
data->no_of_items != 3) {
printf("failure 27\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 24 || slice_temp->end_offset != 31 ||
SC_ATOMIC_GET(slice_temp->done) != 1) {
printf("failure 28\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp != NULL) {
printf("failure 29\n");
goto end;
}
/* culling */
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 1) {
printf("failure 30\n");
goto end;
}
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 31\n");
goto end;
}
if (culled_info.d_buffer_start_offset != 24 ||
culled_info.d_buffer_len != 8 ||
culled_info.op_buffer_start_offset != 2 ||
culled_info.d_buffer_reset != 0 || culled_info.op_buffer_reset != 0) {
printf("failure 32\n");
goto end;
}
if (data->d_buffer_write != 32 || data->d_buffer_read != 24 ||
data->op_buffer_write != 3 || data->op_buffer_read != 2 ||
data->no_of_items != 3) {
printf("failure 33\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 32 || data->d_buffer_read != 32 ||
data->op_buffer_write != 3 || data->op_buffer_read != 3 ||
data->no_of_items != 3) {
printf("failure 34\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 35\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
int CudaBufferTest03(void)
{
CudaBufferSlice *slice1, *slice2, *slice3, *slice_temp;
int result = 0;
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
slice1 = CudaBufferGetSlice(data, 16, NULL);
slice2 = CudaBufferGetSlice(data, 16, NULL);
slice3 = CudaBufferGetSlice(data, 24, NULL);
/* culling */
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 0) {
printf("failure 1\n");
goto end;
}
if (data->d_buffer_write != 56 || data->d_buffer_read != 0 ||
data->op_buffer_write != 3 || data->op_buffer_read != 0 ||
data->no_of_items != 3) {
printf("failure 2\n");
goto end;
}
slice_temp = data->slice_head;
if (slice_temp->start_offset != 0 || slice_temp->end_offset != 15 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 3\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 16 || slice_temp->end_offset != 31 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 4\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp->start_offset != 32 || slice_temp->end_offset != 55 ||
SC_ATOMIC_GET(slice_temp->done) != 0) {
printf("failure 5\n");
goto end;
}
slice_temp = slice_temp->next;
if (slice_temp != NULL) {
printf("failure 6\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 7\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
int CudaBufferTest04(void)
{
CudaBufferSlice *slice1, *slice2, *slice3, *slice_temp;
int result = 0;
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
slice1 = CudaBufferGetSlice(data, 16, NULL);
slice2 = CudaBufferGetSlice(data, 16, NULL);
slice3 = CudaBufferGetSlice(data, 24, NULL);
SC_ATOMIC_SET(slice1->done, 1);
/* culling */
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
if (data->d_buffer_write != 56 || data->d_buffer_read != 0 ||
data->op_buffer_write != 3 || data->op_buffer_read != 0 ||
data->no_of_items != 3) {
printf("failure 1\n");
goto end;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 1) {
printf("failure 2\n");
goto end;
}
if (data->d_buffer_write != 56 || data->d_buffer_read != 0 ||
data->op_buffer_write != 3 || data->op_buffer_read != 0 ||
data->no_of_items != 3) {
printf("failure 3\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 56 || data->d_buffer_read != 16 ||
data->op_buffer_write != 3 || data->op_buffer_read != 1 ||
data->no_of_items != 3) {
printf("failure 4\n");
goto end;
}
SC_ATOMIC_SET(slice2->done, 1);
SC_ATOMIC_SET(slice3->done, 1);
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (culled_info.no_of_items != 2) {
printf("failure 5\n");
goto end;
}
if (data->d_buffer_write != 0 || data->d_buffer_read != 16 ||
data->op_buffer_write != 3 || data->op_buffer_read != 1 ||
data->no_of_items != 3) {
printf("failure 6\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 0 || data->d_buffer_read != 0 ||
data->op_buffer_write != 3 || data->op_buffer_read != 3 ||
data->no_of_items != 3) {
printf("failure 7\n");
goto end;
}
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 8\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 9\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
int CudaBufferTest05(void)
{
CudaBufferSlice *slice1, *slice2, *slice3, *slice_temp;
int result = 0;
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
slice1 = CudaBufferGetSlice(data, 16, NULL);
slice2 = CudaBufferGetSlice(data, 16, NULL);
slice3 = CudaBufferGetSlice(data, 24, NULL);
SC_ATOMIC_SET(slice1->done, 1);
/* culling */
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
CudaBufferReportCulledConsumption(data, &culled_info);
SC_ATOMIC_SET(slice2->done, 1);
SC_ATOMIC_SET(slice3->done, 1);
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
CudaBufferReportCulledConsumption(data, &culled_info);
slice1 = CudaBufferGetSlice(data, 16, NULL);
if (slice1 == NULL) {
printf("failure 1\n");
goto end;
}
slice2 = CudaBufferGetSlice(data, 16, NULL);
if (slice2 == NULL) {
printf("failure 2\n");
goto end;
}
slice3 = CudaBufferGetSlice(data, 24, NULL);
if (slice2 == NULL) {
printf("failure 3\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 4\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
int CudaBufferTest06(void)
{
CudaBufferSlice *slice, *slice_temp;
int result = 0;
CudaBufferCulledInfo culled_info;
memset(&culled_info, 0, sizeof(CudaBufferCulledInfo));
uint8_t *d_buffer = SCMalloc(sizeof(uint8_t) * 64);
uint32_t *o_buffer = SCMalloc(sizeof(uint32_t) * 64);
void **p_buffer = SCMalloc(sizeof(void *) * 64);
if (d_buffer == NULL || o_buffer == NULL || p_buffer == NULL) {
printf("failure 0\n");
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return 0;
}
CudaBufferData *data = CudaBufferRegisterNew(d_buffer, 64,
o_buffer, p_buffer, 64);
if (data == NULL) {
goto end;
}
slice = CudaBufferGetSlice(data, 3, NULL);
memcpy(slice->buffer + slice->start_offset,
"one", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 3, NULL);
memcpy(slice->buffer + slice->start_offset,
"two", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
if (data->d_buffer_write != 16 || data->d_buffer_read != 0 ||
data->op_buffer_write != 2 || data->op_buffer_read != 0 ||
data->no_of_items != 2) {
printf("failure 1\n");
goto end;
}
slice = CudaBufferGetSlice(data, 5, NULL);
memcpy(slice->buffer + slice->start_offset,
"three", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 4, NULL);
memcpy(slice->buffer + slice->start_offset,
"four", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 4, NULL);
memcpy(slice->buffer + slice->start_offset,
"five", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
if (data->d_buffer_write != 40 || data->d_buffer_read != 0 ||
data->op_buffer_write != 5 || data->op_buffer_read != 0 ||
data->no_of_items != 5) {
printf("failure 2\n");
goto end;
}
slice = CudaBufferGetSlice(data, 3, NULL);
memcpy(slice->buffer + slice->start_offset,
"six", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 5, NULL);
memcpy(slice->buffer + slice->start_offset,
"seven", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
if (memcmp(data->d_buffer, "one", 3) != 0 ||
memcmp(data->d_buffer + 8, "two", 3) != 0 ||
memcmp(data->d_buffer + 16, "three", 5) != 0 ||
memcmp(data->d_buffer + 24, "four", 4) != 0 ||
memcmp(data->d_buffer + 32, "five", 4) != 0 ||
memcmp(data->d_buffer + 40, "six", 3) != 0 ||
memcmp(data->d_buffer + 48, "seven", 5) != 0) {
printf("failure 3\n");
goto end;
}
if (data->d_buffer_write != 56 || data->d_buffer_read != 0 ||
data->op_buffer_write != 7 || data->op_buffer_read != 0 ||
data->no_of_items != 7) {
printf("failure 4\n");
goto end;
}
/* culling */
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->d_buffer_write != 56 || data->d_buffer_read != 0 ||
data->op_buffer_write != 7 || data->op_buffer_read != 0 ||
data->no_of_items != 7) {
printf("failure 5\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 56 || data->d_buffer_read != 56 ||
data->op_buffer_write != 7 || data->op_buffer_read != 7 ||
data->no_of_items != 7) {
printf("failure 6\n");
goto end;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->d_buffer_write != 0 || data->d_buffer_read != 56 ||
data->op_buffer_write != 7 || data->op_buffer_read != 7 ||
data->no_of_items != 7) {
printf("failure 7\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 0 || data->d_buffer_read != 0 ||
data->op_buffer_write != 7 || data->op_buffer_read != 7 ||
data->no_of_items != 7) {
printf("failure 8\n");
goto end;
}
slice = CudaBufferGetSlice(data, 5, NULL);
memcpy(slice->buffer + slice->start_offset,
"eight", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 4, NULL);
memcpy(slice->buffer + slice->start_offset,
"nine", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 3, NULL);
memcpy(slice->buffer + slice->start_offset,
"ten", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 6, NULL);
memcpy(slice->buffer + slice->start_offset,
"eleven", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
slice = CudaBufferGetSlice(data, 6, NULL);
memcpy(slice->buffer + slice->start_offset,
"twelve", slice->end_offset - slice->start_offset + 1);
SC_ATOMIC_SET(slice->done, 1);
if (data->d_buffer_write != 40 || data->d_buffer_read != 0 ||
data->op_buffer_write != 12 || data->op_buffer_read != 7 ||
data->no_of_items != 12) {
printf("failure 9\n");
goto end;
}
if (memcmp(data->d_buffer, "eight", 5) != 0 ||
memcmp(data->d_buffer + 8, "nine", 4) != 0 ||
memcmp(data->d_buffer + 16, "ten", 3) != 0 ||
memcmp(data->d_buffer + 24, "eleven", 6) != 0 ||
memcmp(data->d_buffer + 32, "twelve", 6) != 0) {
printf("failure 10\n");
goto end;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->d_buffer_write != 40 || data->d_buffer_read != 0 ||
data->op_buffer_write != 12 || data->op_buffer_read != 7 ||
data->no_of_items != 12) {
printf("failure 11\n");
goto end;
}
CudaBufferReportCulledConsumption(data, &culled_info);
if (data->d_buffer_write != 40 || data->d_buffer_read != 40 ||
data->op_buffer_write != 12 || data->op_buffer_read != 12 ||
data->no_of_items != 12) {
printf("failure 12\n");
goto end;
}
result = 1;
end:
slice_temp = data->slice_head;
while (slice_temp != NULL) {
SC_ATOMIC_SET(slice_temp->done, 1);
slice_temp = slice_temp->next;
}
CudaBufferCullCompletedSlices(data, &culled_info, UTIL_MPM_CUDA_GPU_TRANSFER_SIZE);
if (data->slice_head != NULL || data->slice_tail != NULL) {
printf("failure 13\n");
result = 0;
}
CudaBufferDeRegister(data);
SCFree(d_buffer);
SCFree(o_buffer);
SCFree(p_buffer);
return result;
}
#endif /* #ifdef UNITTESTS */
void CudaBufferRegisterUnittests(void)
{
#ifdef UNITTESTS
UtRegisterTest("CudaBufferTest01", CudaBufferTest01, 1);
UtRegisterTest("CudaBufferTest02", CudaBufferTest02, 1);
UtRegisterTest("CudaBufferTest03", CudaBufferTest03, 1);
UtRegisterTest("CudaBufferTest04", CudaBufferTest04, 1);
UtRegisterTest("CudaBufferTest05", CudaBufferTest05, 1);
UtRegisterTest("CudaBufferTest06", CudaBufferTest06, 1);
#endif
return;
}
#endif /* __SC_CUDA_SUPPORT__ */