You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-time.c

611 lines
18 KiB
C

/* Copyright (C) 2007-2016 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
* \author Ken Steele <suricata@tilera.com>
*
* Time keeping for offline (non-live) packet handling (pcap files).
* And time string generation for alerts.
*/
/* Real time vs offline time
*
* When we run on live traffic, time handling is simple. Packets have a
* timestamp set by the capture method. Management threads can simply
* use 'gettimeofday' to know the current time. There should never be
* any serious gap between the two.
*
* In offline mode, things are dramatically different. Here we try to keep
* the time from the pcap, which means that if the packets are in 2011 the
* log output should also reflect this. Multiple issues:
* 1. merged pcaps might have huge time jumps or time going backward
* 2. slowly recorded pcaps may be processed much faster than their 'realtime'
* 3. management threads need a concept of what the 'current' time is for
* enforcing timeouts
* 4. due to (1) individual threads may have very different views on what
* the current time is. E.g. T1 processed packet 1 with TS X, while T2
* at the very same time processes packet 2 with TS X+100000s.
*
* In offline mode we keep the timestamp per thread. If a management thread
* needs current time, it will get the minimum of the threads' values. This
* is to avoid the problem that T2s time value might already trigger a flow
* timeout as the flow lastts + 100000s is almost certainly meaning the flow
* would be considered timed out.
*/
#include "suricata-common.h"
#include "detect.h"
#include "threads.h"
#include "tm-threads.h"
#include "util-debug.h"
#ifdef UNITTESTS
static struct timeval current_time = { 0, 0 };
#endif
//static SCMutex current_time_mutex = SCMUTEX_INITIALIZER;
static SCSpinlock current_time_spinlock;
static char live = TRUE;
struct tm *SCLocalTime(time_t timep, struct tm *result);
struct tm *SCUtcTime(time_t timep, struct tm *result);
void TimeInit(void)
{
SCSpinInit(&current_time_spinlock, 0);
/* Initialize Time Zone settings. */
tzset();
}
void TimeDeinit(void)
{
SCSpinDestroy(&current_time_spinlock);
}
void TimeModeSetLive(void)
{
live = TRUE;
SCLogDebug("live time mode enabled");
}
void TimeModeSetOffline (void)
{
live = FALSE;
SCLogDebug("offline time mode enabled");
}
int TimeModeIsLive(void)
{
return live;
}
void TimeSetByThread(const int thread_id, const struct timeval *tv)
{
if (live == TRUE)
return;
TmThreadsSetThreadTimestamp(thread_id, tv);
}
#ifdef UNITTESTS
void TimeSet(struct timeval *tv)
{
if (live == TRUE)
return;
if (tv == NULL)
return;
SCSpinLock(&current_time_spinlock);
current_time.tv_sec = tv->tv_sec;
current_time.tv_usec = tv->tv_usec;
SCLogDebug("time set to %" PRIuMAX " sec, %" PRIuMAX " usec",
(uintmax_t)current_time.tv_sec, (uintmax_t)current_time.tv_usec);
SCSpinUnlock(&current_time_spinlock);
}
/** \brief set the time to "gettimeofday" meant for testing */
void TimeSetToCurrentTime(void)
{
struct timeval tv;
memset(&tv, 0x00, sizeof(tv));
gettimeofday(&tv, NULL);
TimeSet(&tv);
}
#endif
void TimeGet(struct timeval *tv)
{
if (tv == NULL)
return;
if (live == TRUE) {
gettimeofday(tv, NULL);
} else {
#ifdef UNITTESTS
if (unlikely(RunmodeIsUnittests())) {
SCSpinLock(&current_time_spinlock);
tv->tv_sec = current_time.tv_sec;
tv->tv_usec = current_time.tv_usec;
SCSpinUnlock(&current_time_spinlock);
} else {
#endif
TmreadsGetMinimalTimestamp(tv);
#ifdef UNITTESTS
}
#endif
}
SCLogDebug("time we got is %" PRIuMAX " sec, %" PRIuMAX " usec",
(uintmax_t)tv->tv_sec, (uintmax_t)tv->tv_usec);
}
#ifdef UNITTESTS
/** \brief increment the time in the engine
* \param tv_sec seconds to increment the time with */
void TimeSetIncrementTime(uint32_t tv_sec)
{
struct timeval tv;
memset(&tv, 0x00, sizeof(tv));
TimeGet(&tv);
tv.tv_sec += tv_sec;
TimeSet(&tv);
}
#endif
void CreateIsoTimeString (const struct timeval *ts, char *str, size_t size)
{
time_t time = ts->tv_sec;
struct tm local_tm;
memset(&local_tm, 0, sizeof(local_tm));
struct tm *t = (struct tm*)SCLocalTime(time, &local_tm);
char time_fmt[64] = { 0 };
if (likely(t != NULL)) {
strftime(time_fmt, sizeof(time_fmt), "%Y-%m-%dT%H:%M:%S.%%06u%z", t);
snprintf(str, size, time_fmt, ts->tv_usec);
} else {
snprintf(str, size, "ts-error");
}
}
void CreateUtcIsoTimeString (const struct timeval *ts, char *str, size_t size)
{
time_t time = ts->tv_sec;
struct tm local_tm;
memset(&local_tm, 0, sizeof(local_tm));
struct tm *t = (struct tm*)SCUtcTime(time, &local_tm);
char time_fmt[64] = { 0 };
if (likely(t != NULL)) {
strftime(time_fmt, sizeof(time_fmt), "%Y-%m-%dT%H:%M:%S", t);
snprintf(str, size, time_fmt, ts->tv_usec);
} else {
snprintf(str, size, "ts-error");
}
}
void CreateFormattedTimeString (const struct tm *t, const char *fmt, char *str, size_t size)
{
if (likely(t != NULL && fmt != NULL && str != NULL)) {
strftime(str, size, fmt, t);
} else {
snprintf(str, size, "ts-error");
}
}
struct tm *SCUtcTime(time_t timep, struct tm *result)
{
return gmtime_r(&timep, result);
}
/*
* Time Caching code
*/
#ifndef TLS
/* OpenBSD does not support __thread, so don't use time caching on BSD
*/
struct tm *SCLocalTime(time_t timep, struct tm *result)
{
return localtime_r(&timep, result);
}
void CreateTimeString (const struct timeval *ts, char *str, size_t size)
{
time_t time = ts->tv_sec;
struct tm local_tm;
struct tm *t = (struct tm*)SCLocalTime(time, &local_tm);
if (likely(t != NULL)) {
snprintf(str, size, "%02d/%02d/%02d-%02d:%02d:%02d.%06u",
t->tm_mon + 1, t->tm_mday, t->tm_year + 1900, t->tm_hour,
t->tm_min, t->tm_sec, (uint32_t) ts->tv_usec);
} else {
snprintf(str, size, "ts-error");
}
}
#else
/* On systems supporting __thread, use Per-thread values for caching
* in CreateTimeString */
/* The maximum possible length of the time string.
* "%02d/%02d/%02d-%02d:%02d:%02d.%06u"
* Or "01/01/2013-15:42:21.123456", which is 26, so round up to 32. */
#define MAX_LOCAL_TIME_STRING 32
static __thread int mru_time_slot; /* Most recently used cached value */
static __thread time_t last_local_time[2];
static __thread short int cached_local_time_len[2];
static __thread char cached_local_time[2][MAX_LOCAL_TIME_STRING];
/* Per-thread values for caching SCLocalTime() These cached values are
* independent from the CreateTimeString cached values. */
static __thread int mru_tm_slot; /* Most recently used local tm */
static __thread time_t cached_minute_start[2];
static __thread struct tm cached_local_tm[2];
/** \brief Convert time_t into Year, month, day, hour and minutes.
* \param timep Time in seconds since defined date.
* \param result The structure into which the broken down time it put.
*
* To convert a time in seconds into year, month, day, hours, minutes
* and seconds, call localtime_r(), which uses the current time zone
* to compute these values. Note, glibc's localtime_r() aquires a lock
* each time it is called, which limits parallelism. To call
* localtime_r() less often, the values returned are cached for the
* current and previous minute and then seconds are adjusted to
* compute the returned result. This is valid as long as the
* difference between the start of the current minute and the current
* time is less than 60 seconds. Once the minute value changes, all
* the other values could change.
*
* Two values are cached to prevent thrashing when changing from one
* minute to the next. The two cached minutes are independent and are
* not required to be M and M+1. If more than two minutes are
* requested, the least-recently-used cached value is updated more
* often, the results are still correct, but performance will be closer
* to previous performance.
*/
struct tm *SCLocalTime(time_t timep, struct tm *result)
{
/* Only get a new local time when the time crosses into a new
* minute. */
int mru = mru_tm_slot;
int lru = 1 - mru;
int mru_seconds = timep - cached_minute_start[mru];
int lru_seconds = timep - cached_minute_start[lru];
int new_seconds;
if (cached_minute_start[mru]==0 && cached_minute_start[lru]==0) {
localtime_r(&timep, &cached_local_tm[lru]);
/* Subtract seconds to get back to the start of the minute. */
new_seconds = cached_local_tm[lru].tm_sec;
cached_minute_start[lru] = timep - new_seconds;
mru = lru;
mru_tm_slot = mru;
} else if (lru_seconds > 0 && (mru_seconds >= 0 && mru_seconds <= 59)) {
/* Use most-recently cached time, adjusting the seconds. */
new_seconds = mru_seconds;
} else if (mru_seconds > 0 && (lru_seconds >= 0 && lru_seconds <= 59)) {
/* Use least-recently cached time, update to most recently used. */
new_seconds = lru_seconds;
mru = lru;
mru_tm_slot = mru;
} else {
/* Update least-recent cached time. */
if (localtime_r(&timep, &cached_local_tm[lru]) == NULL)
return NULL;
/* Subtract seconds to get back to the start of the minute. */
new_seconds = cached_local_tm[lru].tm_sec;
cached_minute_start[lru] = timep - new_seconds;
mru = lru;
mru_tm_slot = mru;
}
memcpy(result, &cached_local_tm[mru], sizeof(struct tm));
result->tm_sec = new_seconds;
return result;
}
/* Update the cached time string in cache index N, for the current minute. */
static int UpdateCachedTime(int n, time_t time)
{
struct tm local_tm;
struct tm *t = (struct tm *)SCLocalTime(time, &local_tm);
int cached_len = snprintf(cached_local_time[n], MAX_LOCAL_TIME_STRING,
"%02d/%02d/%02d-%02d:%02d:",
t->tm_mon + 1, t->tm_mday, t->tm_year + 1900,
t->tm_hour, t->tm_min);
cached_local_time_len[n] = cached_len;
/* Store the time of the beginning of the minute. */
last_local_time[n] = time - t->tm_sec;
mru_time_slot = n;
return t->tm_sec;
}
/** \brief Return a formatted string for the provided time.
*
* Cache the Month/Day/Year - Hours:Min part of the time string for
* the current minute. Copy that result into the the return string and
* then only print the seconds for each call.
*/
void CreateTimeString (const struct timeval *ts, char *str, size_t size)
{
time_t time = ts->tv_sec;
int seconds;
/* Only get a new local time when the time crosses into a new
* minute */
int mru = mru_time_slot;
int lru = 1 - mru;
int mru_seconds = time - last_local_time[mru];
int lru_seconds = time - last_local_time[lru];
if (last_local_time[mru]==0 && last_local_time[lru]==0) {
/* First time here, update both caches */
UpdateCachedTime(mru, time);
seconds = UpdateCachedTime(lru, time);
} else if (mru_seconds >= 0 && mru_seconds <= 59) {
/* Use most-recently cached time. */
seconds = mru_seconds;
} else if (lru_seconds >= 0 && lru_seconds <= 59) {
/* Use least-recently cached time. Change this slot to Most-recent */
seconds = lru_seconds;
mru_time_slot = lru;
} else {
/* Update least-recent cached time. Lock accessing local time
* function because it keeps any internal non-spin lock. */
seconds = UpdateCachedTime(lru, time);
}
/* Copy the string up to the current minute then print the seconds
into the return string buffer. */
char *cached_str = cached_local_time[mru_time_slot];
int cached_len = cached_local_time_len[mru_time_slot];
if (cached_len >= (int)size)
cached_len = size;
memcpy(str, cached_str, cached_len);
snprintf(str + cached_len, size - cached_len,
"%02d.%06u",
seconds, (uint32_t) ts->tv_usec);
}
#endif /* defined(__OpenBSD__) */
/**
* \brief Convert broken-down time to seconds since Unix epoch.
*
* This function is based on: http://www.catb.org/esr/time-programming
* (released to the public domain).
*
* \param tp Pointer to broken-down time.
*
* \retval Seconds since Unix epoch.
*/
time_t SCMkTimeUtc (struct tm *tp)
{
time_t result;
long year;
#define MONTHSPERYEAR 12
static const int mdays[MONTHSPERYEAR] =
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
year = 1900 + tp->tm_year + tp->tm_mon / MONTHSPERYEAR;
result = (year - 1970) * 365 + mdays[tp->tm_mon % MONTHSPERYEAR];
result += (year - 1968) / 4;
result -= (year - 1900) / 100;
result += (year - 1600) / 400;
if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0) &&
(tp->tm_mon % MONTHSPERYEAR) < 2)
result--;
result += tp->tm_mday - 1;
result *= 24;
result += tp->tm_hour;
result *= 60;
result += tp->tm_min;
result *= 60;
result += tp->tm_sec;
#ifndef OS_WIN32
if (tp->tm_gmtoff)
result -= tp->tm_gmtoff;
#endif
return result;
}
/**
* \brief Parse a date string based on specified patterns.
*
* This function is based on GNU C library getdate.
*
* \param string Date string to parse.
* \param patterns String array containing patterns.
* \param num_patterns Number of patterns to check.
* \param tp Pointer to broken-down time.
*
* \retval 0 on success.
* \retval 1 on failure.
*/
int SCStringPatternToTime (char *string, const char **patterns, int num_patterns,
struct tm *tp)
{
char *result = NULL;
int i = 0;
/* Do the pattern matching */
for (i = 0; i < num_patterns; i++)
{
if (patterns[i] == NULL)
continue;
tp->tm_hour = tp->tm_min = tp->tm_sec = 0;
tp->tm_year = tp->tm_mon = tp->tm_mday = tp->tm_wday = INT_MIN;
tp->tm_isdst = -1;
#ifndef OS_WIN32
tp->tm_gmtoff = 0;
tp->tm_zone = NULL;
#endif
result = strptime(string, patterns[i], tp);
if (result && *result == '\0')
break;
}
/* Return if no patterns matched */
if (result == NULL || *result != '\0')
return 1;
/* Return if no date is given */
if (tp->tm_year == INT_MIN && tp->tm_mon == INT_MIN &&
tp->tm_mday == INT_MIN)
return 1;
/* The first of the month is assumed, if only year and
month is given */
if (tp->tm_year != INT_MIN && tp->tm_mon != INT_MIN &&
tp->tm_mday <= 0)
tp->tm_mday = 1;
return 0;
}
/**
* \brief Convert epoch time to string pattern.
*
* This function converts epoch time to a string based on a pattern.
*
* \param epoch Epoch time.
* \param pattern String pattern.
* \param str Formated string.
* \param size Size of allocated string.
*
* \retval 0 on success.
* \retval 1 on failure.
*/
int SCTimeToStringPattern (time_t epoch, const char *pattern, char *str, size_t size)
{
struct tm tm;
memset(&tm, 0, sizeof(tm));
struct tm *tp = (struct tm *)SCLocalTime(epoch, &tm);
char buffer[PATH_MAX] = { 0 };
if (unlikely(tp == NULL)) {
return 1;
}
int r = strftime(buffer, sizeof(buffer), pattern, tp);
if (r == 0) {
return 1;
}
strlcpy(str, buffer, size);
return 0;
}
/**
* \brief Parse string containing time size (1m, 1h, etc).
*
* \param str String to parse.
*
* \retval size on success.
* \retval 0 on failure.
*/
uint64_t SCParseTimeSizeString (const char *str)
{
uint64_t size = 0;
uint64_t modifier = 1;
char last = str[strlen(str)-1];
switch (last)
{
case '0' ... '9':
break;
/* seconds */
case 's':
break;
/* minutes */
case 'm':
modifier = 60;
break;
/* hours */
case 'h':
modifier = 60 * 60;
break;
/* days */
case 'd':
modifier = 60 * 60 * 24;
break;
/* weeks */
case 'w':
modifier = 60 * 60 * 24 * 7;
break;
/* invalid */
default:
return 0;
}
errno = 0;
size = strtoumax(str, NULL, 10);
if (errno) {
return 0;
}
return (size * modifier);
}
/**
* \brief Get seconds until a time unit changes.
*
* \param str String containing time type (minute, hour, etc).
* \param epoch Epoch time.
*
* \retval seconds.
*/
uint64_t SCGetSecondsUntil (const char *str, time_t epoch)
{
uint64_t seconds = 0;
struct tm tm;
memset(&tm, 0, sizeof(tm));
struct tm *tp = (struct tm *)SCLocalTime(epoch, &tm);
if (strcmp(str, "minute") == 0)
seconds = 60 - tp->tm_sec;
else if (strcmp(str, "hour") == 0)
seconds = (60 * (60 - tp->tm_min)) + (60 - tp->tm_sec);
else if (strcmp(str, "day") == 0)
seconds = (3600 * (24 - tp->tm_hour)) + (60 * (60 - tp->tm_min)) +
(60 - tp->tm_sec);
return seconds;
}
uint64_t SCTimespecAsEpochMillis(const struct timespec* ts)
{
return ts->tv_sec * 1000L + ts->tv_nsec / 1000000L;
}