You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/rust/src/rfb/rfb.rs

1006 lines
42 KiB
Rust

/* Copyright (C) 2020-2023 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
// Author: Frank Honza <frank.honza@dcso.de>
// Sascha Steinbiss <sascha.steinbiss@dcso.de>
use super::parser;
use crate::applayer;
use crate::applayer::*;
use crate::core::{AppProto, Flow, ALPROTO_UNKNOWN, IPPROTO_TCP};
use crate::frames::*;
use nom7::Err;
use std;
use std::ffi::CString;
pub(super) static mut ALPROTO_RFB: AppProto = ALPROTO_UNKNOWN;
#[derive(FromPrimitive, Debug, AppLayerEvent)]
pub enum RFBEvent {
UnimplementedSecurityType,
UnknownSecurityResult,
MalformedMessage,
ConfusedState,
}
#[derive(AppLayerFrameType)]
pub enum RFBFrameType {
Pdu,
}
pub struct RFBTransaction {
tx_id: u64,
pub complete: bool,
pub chosen_security_type: Option<u32>,
pub tc_server_protocol_version: Option<parser::ProtocolVersion>,
pub ts_client_protocol_version: Option<parser::ProtocolVersion>,
pub tc_supported_security_types: Option<parser::SupportedSecurityTypes>,
pub ts_security_type_selection: Option<parser::SecurityTypeSelection>,
pub tc_server_security_type: Option<parser::ServerSecurityType>,
pub tc_vnc_challenge: Option<parser::VncAuth>,
pub ts_vnc_response: Option<parser::VncAuth>,
pub ts_client_init: Option<parser::ClientInit>,
pub tc_security_result: Option<parser::SecurityResult>,
pub tc_failure_reason: Option<parser::FailureReason>,
pub tc_server_init: Option<parser::ServerInit>,
tx_data: applayer::AppLayerTxData,
}
impl Transaction for RFBTransaction {
fn id(&self) -> u64 {
self.tx_id
}
}
impl Default for RFBTransaction {
fn default() -> Self {
Self::new()
}
}
impl RFBTransaction {
pub fn new() -> Self {
Self {
tx_id: 0,
complete: false,
chosen_security_type: None,
tc_server_protocol_version: None,
ts_client_protocol_version: None,
tc_supported_security_types: None,
ts_security_type_selection: None,
tc_server_security_type: None,
tc_vnc_challenge: None,
ts_vnc_response: None,
ts_client_init: None,
tc_security_result: None,
tc_failure_reason: None,
tc_server_init: None,
tx_data: applayer::AppLayerTxData::new(),
}
}
fn set_event(&mut self, event: RFBEvent) {
self.tx_data.set_event(event as u8);
}
}
pub struct RFBState {
state_data: AppLayerStateData,
tx_id: u64,
transactions: Vec<RFBTransaction>,
state: parser::RFBGlobalState,
}
impl State<RFBTransaction> for RFBState {
fn get_transaction_count(&self) -> usize {
self.transactions.len()
}
fn get_transaction_by_index(&self, index: usize) -> Option<&RFBTransaction> {
self.transactions.get(index)
}
}
impl Default for RFBState {
fn default() -> Self {
Self::new()
}
}
impl RFBState {
pub fn new() -> Self {
Self {
state_data: AppLayerStateData::new(),
tx_id: 0,
transactions: Vec::new(),
state: parser::RFBGlobalState::TCServerProtocolVersion,
}
}
// Free a transaction by ID.
fn free_tx(&mut self, tx_id: u64) {
let len = self.transactions.len();
let mut found = false;
let mut index = 0;
for i in 0..len {
let tx = &self.transactions[i];
if tx.tx_id == tx_id + 1 {
found = true;
index = i;
break;
}
}
if found {
self.transactions.remove(index);
}
}
pub fn get_tx(&mut self, tx_id: u64) -> Option<&RFBTransaction> {
self.transactions.iter().find(|tx| tx.tx_id == tx_id + 1)
}
fn new_tx(&mut self) -> RFBTransaction {
let mut tx = RFBTransaction::new();
self.tx_id += 1;
tx.tx_id = self.tx_id;
return tx;
}
fn get_current_tx(&mut self) -> Option<&mut RFBTransaction> {
let tx_id = self.tx_id;
self.transactions.iter_mut().find(|tx| tx.tx_id == tx_id)
}
fn parse_request(&mut self, flow: *const Flow, stream_slice: StreamSlice) -> AppLayerResult {
let input = stream_slice.as_slice();
// We're not interested in empty requests.
if input.is_empty() {
return AppLayerResult::ok();
}
let mut current = input;
let mut consumed = 0;
SCLogDebug!("request_state {}, input_len {}", self.state, input.len());
loop {
if current.is_empty() {
return AppLayerResult::ok();
}
match self.state {
parser::RFBGlobalState::TSClientProtocolVersion => {
match parser::parse_protocol_version(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
if request.major == "003" && request.minor == "003" {
// in version 3.3 the server decided security type
self.state = parser::RFBGlobalState::TCServerSecurityType;
} else {
self.state = parser::RFBGlobalState::TCSupportedSecurityTypes;
}
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.ts_client_protocol_version = Some(request);
} else {
debug_validate_fail!(
"no transaction set at protocol selection stage"
);
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
// We even failed to parse the protocol version.
return AppLayerResult::err();
}
}
}
parser::RFBGlobalState::TSSecurityTypeSelection => {
match parser::parse_security_type_selection(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
let chosen_security_type = request.security_type;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.ts_security_type_selection = Some(request);
current_transaction.chosen_security_type =
Some(chosen_security_type as u32);
} else {
debug_validate_fail!("no transaction set at security type stage");
}
match chosen_security_type {
2 => self.state = parser::RFBGlobalState::TCVncChallenge,
1 => self.state = parser::RFBGlobalState::TSClientInit,
_ => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction
.set_event(RFBEvent::UnimplementedSecurityType);
}
// We have just have seen a security type we don't know about.
// This is not bad per se, it might just mean this is a
// proprietary one not in the spec.
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// We failed to parse the security type.
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::TSVncResponse => match parser::parse_vnc_auth(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
self.state = parser::RFBGlobalState::TCSecurityResult;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.ts_vnc_response = Some(request);
} else {
debug_validate_fail!("no transaction set at security result stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
},
parser::RFBGlobalState::TSClientInit => match parser::parse_client_init(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
self.state = parser::RFBGlobalState::TCServerInit;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.ts_client_init = Some(request);
} else {
debug_validate_fail!("no transaction set at client init stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// We failed to parse the client init.
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
},
parser::RFBGlobalState::Skip => {
// End of parseable handshake reached, skip rest of traffic
return AppLayerResult::ok();
}
_ => {
// We have gotten out of sync with the expected state flow.
// This could happen since we use a global state (i.e. that
// is used for both directions), but if traffic can not be
// parsed as expected elsewhere, we might not have advanced
// a state for one direction but received data in the
// "unexpected" direction, causing the parser to end up
// here. Let's stop trying to parse the traffic but still
// accept it.
SCLogDebug!("Invalid state for request: {}", self.state);
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::ConfusedState);
current_transaction.complete = true;
}
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
}
fn parse_response(&mut self, flow: *const Flow, stream_slice: StreamSlice) -> AppLayerResult {
let input = stream_slice.as_slice();
// We're not interested in empty responses.
if input.is_empty() {
return AppLayerResult::ok();
}
let mut current = input;
let mut consumed = 0;
SCLogDebug!(
"response_state {}, response_len {}",
self.state,
input.len()
);
loop {
if current.is_empty() {
return AppLayerResult::ok();
}
match self.state {
parser::RFBGlobalState::TCServerProtocolVersion => {
match parser::parse_protocol_version(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
self.state = parser::RFBGlobalState::TSClientProtocolVersion;
let tx = self.new_tx();
self.transactions.push(tx);
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_server_protocol_version = Some(request);
} else {
debug_validate_fail!("no transaction set but we just set one");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
// We even failed to parse the protocol version.
return AppLayerResult::err();
}
}
}
parser::RFBGlobalState::TCSupportedSecurityTypes => {
match parser::parse_supported_security_types(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
SCLogDebug!(
"supported_security_types: {}, types: {}",
request.number_of_types,
request
.types
.iter()
.map(ToString::to_string)
.map(|v| v + " ")
.collect::<String>()
);
self.state = parser::RFBGlobalState::TSSecurityTypeSelection;
if request.number_of_types == 0 {
self.state = parser::RFBGlobalState::TCFailureReason;
}
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_supported_security_types = Some(request);
} else {
debug_validate_fail!("no transaction set at security type stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::TCServerSecurityType => {
// In RFB 3.3, the server decides the authentication type
match parser::parse_server_security_type(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
let chosen_security_type = request.security_type;
SCLogDebug!("chosen_security_type: {}", chosen_security_type);
match chosen_security_type {
0 => self.state = parser::RFBGlobalState::TCFailureReason,
1 => self.state = parser::RFBGlobalState::TSClientInit,
2 => self.state = parser::RFBGlobalState::TCVncChallenge,
_ => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction
.set_event(RFBEvent::UnimplementedSecurityType);
current_transaction.complete = true;
} else {
debug_validate_fail!(
"no transaction set at security type stage"
);
}
// We have just have seen a security type we don't know about.
// This is not bad per se, it might just mean this is a
// proprietary one not in the spec.
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_server_security_type = Some(request);
current_transaction.chosen_security_type =
Some(chosen_security_type);
} else {
debug_validate_fail!("no transaction set at security type stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::TCVncChallenge => match parser::parse_vnc_auth(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
self.state = parser::RFBGlobalState::TSVncResponse;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_vnc_challenge = Some(request);
} else {
debug_validate_fail!("no transaction set at auth stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
},
parser::RFBGlobalState::TCSecurityResult => {
match parser::parse_security_result(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
if request.status == 0 {
self.state = parser::RFBGlobalState::TSClientInit;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_security_result = Some(request);
} else {
debug_validate_fail!(
"no transaction set at security result stage"
);
}
} else if request.status == 1 {
self.state = parser::RFBGlobalState::TCFailureReason;
} else {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::UnknownSecurityResult);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::TCFailureReason => {
match parser::parse_failure_reason(current) {
Ok((_rem, request)) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_failure_reason = Some(request);
} else {
debug_validate_fail!("no transaction set at failure reason stage");
}
return AppLayerResult::ok();
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::TCServerInit => {
match parser::parse_server_init(current) {
Ok((rem, request)) => {
consumed += current.len() - rem.len();
let _pdu = Frame::new(
flow,
&stream_slice,
current,
consumed as i64,
RFBFrameType::Pdu as u8,
None,
);
current = rem;
self.state = parser::RFBGlobalState::Skip;
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.tc_server_init = Some(request);
// connection initialization is complete and parsed
current_transaction.complete = true;
} else {
debug_validate_fail!("no transaction set at server init stage");
}
}
Err(Err::Incomplete(_)) => {
return AppLayerResult::incomplete(
consumed as u32,
(current.len() + 1) as u32,
);
}
Err(_) => {
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::MalformedMessage);
current_transaction.complete = true;
}
// Continue the flow but stop trying to map the protocol.
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
parser::RFBGlobalState::Skip => {
//todo implement RFB messages, for now we stop here
return AppLayerResult::ok();
}
_ => {
// We have gotten out of sync with the expected state flow.
// This could happen since we use a global state (i.e. that
// is used for both directions), but if traffic can not be
// parsed as expected elsewhere, we might not have advanced
// a state for one direction but received data in the
// "unexpected" direction, causing the parser to end up
// here. Let's stop trying to parse the traffic but still
// accept it.
SCLogDebug!("Invalid state for response: {}", self.state);
if let Some(current_transaction) = self.get_current_tx() {
current_transaction.set_event(RFBEvent::ConfusedState);
current_transaction.complete = true;
}
self.state = parser::RFBGlobalState::Skip;
return AppLayerResult::ok();
}
}
}
}
}
// C exports.
#[no_mangle]
pub extern "C" fn rs_rfb_state_new(
_orig_state: *mut std::os::raw::c_void, _orig_proto: AppProto,
) -> *mut std::os::raw::c_void {
let state = RFBState::new();
let boxed = Box::new(state);
return Box::into_raw(boxed) as *mut _;
}
#[no_mangle]
pub extern "C" fn rs_rfb_state_free(state: *mut std::os::raw::c_void) {
// Just unbox...
std::mem::drop(unsafe { Box::from_raw(state as *mut RFBState) });
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_state_tx_free(state: *mut std::os::raw::c_void, tx_id: u64) {
let state = cast_pointer!(state, RFBState);
state.free_tx(tx_id);
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_parse_request(
flow: *const Flow, state: *mut std::os::raw::c_void, _pstate: *mut std::os::raw::c_void,
stream_slice: StreamSlice, _data: *const std::os::raw::c_void,
) -> AppLayerResult {
let state = cast_pointer!(state, RFBState);
return state.parse_request(flow, stream_slice);
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_parse_response(
flow: *const Flow, state: *mut std::os::raw::c_void, _pstate: *mut std::os::raw::c_void,
stream_slice: StreamSlice, _data: *const std::os::raw::c_void,
) -> AppLayerResult {
let state = cast_pointer!(state, RFBState);
return state.parse_response(flow, stream_slice);
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_state_get_tx(
state: *mut std::os::raw::c_void, tx_id: u64,
) -> *mut std::os::raw::c_void {
let state = cast_pointer!(state, RFBState);
match state.get_tx(tx_id) {
Some(tx) => {
return tx as *const _ as *mut _;
}
None => {
return std::ptr::null_mut();
}
}
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_state_get_tx_count(state: *mut std::os::raw::c_void) -> u64 {
let state = cast_pointer!(state, RFBState);
return state.tx_id;
}
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_tx_get_alstate_progress(
tx: *mut std::os::raw::c_void, _direction: u8,
) -> std::os::raw::c_int {
let tx = cast_pointer!(tx, RFBTransaction);
if tx.complete {
return 1;
}
return 0;
}
// Parser name as a C style string.
const PARSER_NAME: &[u8] = b"rfb\0";
export_tx_data_get!(rs_rfb_get_tx_data, RFBTransaction);
export_state_data_get!(rs_rfb_get_state_data, RFBState);
#[no_mangle]
pub unsafe extern "C" fn rs_rfb_register_parser() {
let parser = RustParser {
name: PARSER_NAME.as_ptr() as *const std::os::raw::c_char,
default_port: std::ptr::null(),
ipproto: IPPROTO_TCP,
probe_ts: None,
probe_tc: None,
min_depth: 0,
max_depth: 16,
state_new: rs_rfb_state_new,
state_free: rs_rfb_state_free,
tx_free: rs_rfb_state_tx_free,
parse_ts: rs_rfb_parse_request,
parse_tc: rs_rfb_parse_response,
get_tx_count: rs_rfb_state_get_tx_count,
get_tx: rs_rfb_state_get_tx,
tx_comp_st_ts: 1,
tx_comp_st_tc: 1,
tx_get_progress: rs_rfb_tx_get_alstate_progress,
get_eventinfo: Some(RFBEvent::get_event_info),
get_eventinfo_byid: Some(RFBEvent::get_event_info_by_id),
localstorage_new: None,
localstorage_free: None,
get_tx_files: None,
get_tx_iterator: Some(applayer::state_get_tx_iterator::<RFBState, RFBTransaction>),
get_tx_data: rs_rfb_get_tx_data,
get_state_data: rs_rfb_get_state_data,
apply_tx_config: None,
flags: 0,
get_frame_id_by_name: Some(RFBFrameType::ffi_id_from_name),
get_frame_name_by_id: Some(RFBFrameType::ffi_name_from_id),
};
let ip_proto_str = CString::new("tcp").unwrap();
if AppLayerProtoDetectConfProtoDetectionEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let alproto = AppLayerRegisterProtocolDetection(&parser, 1);
ALPROTO_RFB = alproto;
if AppLayerParserConfParserEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let _ = AppLayerRegisterParser(&parser, alproto);
}
SCLogDebug!("Rust rfb parser registered.");
AppLayerParserRegisterLogger(IPPROTO_TCP, ALPROTO_RFB);
} else {
SCLogDebug!("Protocol detector and parser disabled for RFB.");
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::core::STREAM_START;
#[test]
fn test_error_state() {
let mut state = RFBState::new();
let buf: &[u8] = &[
0x05, 0x00, 0x03, 0x20, 0x20, 0x18, 0x00, 0x01, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
0x10, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x61, 0x6e, 0x65, 0x61,
0x67, 0x6c, 0x65, 0x73, 0x40, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x68, 0x6f, 0x73, 0x74,
0x2e, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x64, 0x6f, 0x6d, 0x61, 0x69, 0x6e,
];
let r = state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(buf, STREAM_START, 0),
);
assert_eq!(
r,
AppLayerResult {
status: -1,
consumed: 0,
needed: 0
}
);
}
// Test the state machine for RFB protocol
// Passes an initial buffer with initial RFBState = TCServerProtocolVersion
// Tests various client and server RFBStates as the buffer is parsed using parse_request and parse_response functions
#[test]
fn test_rfb_state_machine() {
let mut init_state = RFBState::new();
let buf: &[u8] = &[
0x52, 0x46, 0x42, 0x20, 0x30, 0x30, 0x33, 0x2e, 0x30, 0x30, 0x38, 0x0a,
0x01, /* Number of security types: 1 */
0x02, /* Security type: VNC (2) */
0x02, /* Security type selected: VNC (2) */
0x54, 0x7b, 0x7a, 0x6f, 0x36, 0xa1, 0x54, 0xdb, 0x03, 0xa2, 0x57, 0x5c, 0x6f, 0x2a,
0x4e,
0xc5, /* 16 byte Authentication challenge: 547b7a6f36a154db03a2575c6f2a4ec5 */
0x00, 0x00, 0x00, 0x00, /* Authentication result: OK */
0x00, /* Share desktop flag: False */
0x05, 0x00, 0x03, 0x20, 0x20, 0x18, 0x00, 0x01, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
0x10, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x61, 0x6e, 0x65, 0x61,
0x67, 0x6c, 0x65, 0x73, 0x40, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x68, 0x6f, 0x73, 0x74,
0x2e, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x64, 0x6f, 0x6d, 0x61, 0x69,
0x6e, /* Server framebuffer parameters */
];
//The buffer values correspond to Server Protocol version: 003.008
// Same buffer is used for both functions due to similar values in request and response
init_state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(&buf[0..12], STREAM_START, 0),
);
let mut ok_state = parser::RFBGlobalState::TSClientProtocolVersion;
assert_eq!(init_state.state, ok_state);
//The buffer values correspond to Client Protocol version: 003.008
init_state.parse_request(
std::ptr::null(),
StreamSlice::from_slice(&buf[0..12], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TCSupportedSecurityTypes;
assert_eq!(init_state.state, ok_state);
init_state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(&buf[12..14], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TSSecurityTypeSelection;
assert_eq!(init_state.state, ok_state);
init_state.parse_request(
std::ptr::null(),
StreamSlice::from_slice(&buf[14..15], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TCVncChallenge;
assert_eq!(init_state.state, ok_state);
//The buffer values correspond to Server Authentication challenge: 547b7a6f36a154db03a2575c6f2a4ec5
// Same buffer is used for both functions due to similar values in request and response
init_state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(&buf[15..31], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TSVncResponse;
assert_eq!(init_state.state, ok_state);
//The buffer values correspond to Client Authentication response: 547b7a6f36a154db03a2575c6f2a4ec5
init_state.parse_request(
std::ptr::null(),
StreamSlice::from_slice(&buf[15..31], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TCSecurityResult;
assert_eq!(init_state.state, ok_state);
init_state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(&buf[31..35], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TSClientInit;
assert_eq!(init_state.state, ok_state);
init_state.parse_request(
std::ptr::null(),
StreamSlice::from_slice(&buf[35..36], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::TCServerInit;
assert_eq!(init_state.state, ok_state);
init_state.parse_response(
std::ptr::null(),
StreamSlice::from_slice(&buf[36..90], STREAM_START, 0),
);
ok_state = parser::RFBGlobalState::Skip;
assert_eq!(init_state.state, ok_state);
}
}