You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-mpm-ac.c

3211 lines
100 KiB
C

/* Copyright (C) 2007-2014 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Anoop Saldanha <anoopsaldanha@gmail.com>
*
* First iteration of aho-corasick MPM from -
*
* Efficient String Matching: An Aid to Bibliographic Search
* Alfred V. Aho and Margaret J. Corasick
*
* - Uses the delta table for calculating transitions, instead of having
* separate goto and failure transitions.
* - If we cross 2 ** 16 states, we use 4 bytes in the transition table
* to hold each state, otherwise we use 2 bytes.
* - This version of the MPM is heavy on memory, but it performs well.
* If you can fit the ruleset with this mpm on your box without hitting
* swap, this is the MPM to go for.
*
* \todo - Do a proper analyis of our existing MPMs and suggest a good one based
* on the pattern distribution and the expected traffic(say http).
* - Tried out loop unrolling without any perf increase. Need to dig deeper.
* - Irrespective of whether we cross 2 ** 16 states or not,shift to using
* uint32_t for state type, so that we can integrate it's status as a
* final state or not in the topmost byte. We are already doing it if
* state_count is > 2 ** 16.
* - Test case-senstive patterns if they have any ascii chars. If they
* don't treat them as nocase.
* - Carry out other optimizations we are working on. hashes, compression.
*/
#include "suricata-common.h"
#include "suricata.h"
#include "detect.h"
#include "detect-parse.h"
#include "detect-engine.h"
#include "conf.h"
#include "util-debug.h"
#include "util-unittest.h"
#include "util-unittest-helper.h"
#include "util-memcmp.h"
#include "util-mpm-ac.h"
#include "util-memcpy.h"
#ifdef __SC_CUDA_SUPPORT__
#include "util-mpm.h"
#include "tm-threads.h"
#include "detect-engine-mpm.h"
#include "util-cuda.h"
#include "util-cuda-handlers.h"
#endif /* __SC_CUDA_SUPPORT__ */
void SCACInitCtx(MpmCtx *);
void SCACInitThreadCtx(MpmCtx *, MpmThreadCtx *, uint32_t);
void SCACDestroyCtx(MpmCtx *);
void SCACDestroyThreadCtx(MpmCtx *, MpmThreadCtx *);
int SCACAddPatternCI(MpmCtx *, uint8_t *, uint16_t, uint16_t, uint16_t,
uint32_t, uint32_t, uint8_t);
int SCACAddPatternCS(MpmCtx *, uint8_t *, uint16_t, uint16_t, uint16_t,
uint32_t, uint32_t, uint8_t);
int SCACPreparePatterns(MpmCtx *mpm_ctx);
uint32_t SCACSearch(MpmCtx *mpm_ctx, MpmThreadCtx *mpm_thread_ctx,
PatternMatcherQueue *pmq, uint8_t *buf, uint16_t buflen);
void SCACPrintInfo(MpmCtx *mpm_ctx);
void SCACPrintSearchStats(MpmThreadCtx *mpm_thread_ctx);
void SCACRegisterTests(void);
/* a placeholder to denote a failure transition in the goto table */
#define SC_AC_FAIL (-1)
/* size of the hash table used to speed up pattern insertions initially */
#define INIT_HASH_SIZE 65536
#define STATE_QUEUE_CONTAINER_SIZE 65536
static int construct_both_16_and_32_state_tables = 0;
/**
* \brief Helper structure used by AC during state table creation
*/
typedef struct StateQueue_ {
int32_t store[STATE_QUEUE_CONTAINER_SIZE];
int top;
int bot;
} StateQueue;
/**
* \internal
* \brief Initialize the AC context with user specified conf parameters. We
* aren't retrieving anything for AC conf now, but we will certainly
* need it, when we customize AC.
*/
static void SCACGetConfig()
{
//ConfNode *ac_conf;
//const char *hash_val = NULL;
//ConfNode *pm = ConfGetNode("pattern-matcher");
return;
}
/**
* \internal
* \brief Creates a hash of the pattern. We use it for the hashing process
* during the initial pattern insertion time, to cull duplicate sigs.
*
* \param pat Pointer to the pattern.
* \param patlen Pattern length.
*
* \retval hash A 32 bit unsigned hash.
*/
static inline uint32_t SCACInitHashRaw(uint8_t *pat, uint16_t patlen)
{
uint32_t hash = patlen * pat[0];
if (patlen > 1)
hash += pat[1];
return (hash % INIT_HASH_SIZE);
}
/**
* \internal
* \brief Looks up a pattern. We use it for the hashing process during the
* the initial pattern insertion time, to cull duplicate sigs.
*
* \param ctx Pointer to the AC ctx.
* \param pat Pointer to the pattern.
* \param patlen Pattern length.
* \param flags Flags. We don't need this.
*
* \retval hash A 32 bit unsigned hash.
*/
static inline SCACPattern *SCACInitHashLookup(SCACCtx *ctx, uint8_t *pat,
uint16_t patlen, char flags,
uint32_t pid)
{
uint32_t hash = SCACInitHashRaw(pat, patlen);
if (ctx->init_hash == NULL) {
return NULL;
}
SCACPattern *t = ctx->init_hash[hash];
for ( ; t != NULL; t = t->next) {
if (t->id == pid)
return t;
}
return NULL;
}
/**
* \internal
* \brief Allocs a new pattern instance.
*
* \param mpm_ctx Pointer to the mpm context.
*
* \retval p Pointer to the newly created pattern.
*/
static inline SCACPattern *SCACAllocPattern(MpmCtx *mpm_ctx)
{
SCACPattern *p = SCMalloc(sizeof(SCACPattern));
if (unlikely(p == NULL)) {
exit(EXIT_FAILURE);
}
memset(p, 0, sizeof(SCACPattern));
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += sizeof(SCACPattern);
return p;
}
/**
* \internal
* \brief Used to free SCACPattern instances.
*
* \param mpm_ctx Pointer to the mpm context.
* \param p Pointer to the SCACPattern instance to be freed.
* \param free Free the above pointer or not.
*/
static inline void SCACFreePattern(MpmCtx *mpm_ctx, SCACPattern *p)
{
if (p != NULL && p->cs != NULL && p->cs != p->ci) {
SCFree(p->cs);
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= p->len;
}
if (p != NULL && p->ci != NULL) {
SCFree(p->ci);
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= p->len;
}
if (p != NULL && p->original_pat != NULL) {
SCFree(p->original_pat);
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= p->len;
}
if (p != NULL) {
SCFree(p);
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= sizeof(SCACPattern);
}
return;
}
static inline uint32_t SCACInitHash(SCACPattern *p)
{
uint32_t hash = p->len * p->original_pat[0];
if (p->len > 1)
hash += p->original_pat[1];
return (hash % INIT_HASH_SIZE);
}
static inline int SCACInitHashAdd(SCACCtx *ctx, SCACPattern *p)
{
uint32_t hash = SCACInitHash(p);
if (ctx->init_hash == NULL) {
return 0;
}
if (ctx->init_hash[hash] == NULL) {
ctx->init_hash[hash] = p;
return 0;
}
SCACPattern *tt = NULL;
SCACPattern *t = ctx->init_hash[hash];
/* get the list tail */
do {
tt = t;
t = t->next;
} while (t != NULL);
tt->next = p;
return 0;
}
/**
* \internal
* \brief Add a pattern to the mpm-ac context.
*
* \param mpm_ctx Mpm context.
* \param pat Pointer to the pattern.
* \param patlen Length of the pattern.
* \param pid Pattern id
* \param sid Signature id (internal id).
* \param flags Pattern's MPM_PATTERN_* flags.
*
* \retval 0 On success.
* \retval -1 On failure.
*/
static int SCACAddPattern(MpmCtx *mpm_ctx, uint8_t *pat, uint16_t patlen,
uint16_t offset, uint16_t depth, uint32_t pid,
uint32_t sid, uint8_t flags)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
SCLogDebug("Adding pattern for ctx %p, patlen %"PRIu16" and pid %" PRIu32,
ctx, patlen, pid);
if (patlen == 0) {
SCLogWarning(SC_ERR_INVALID_ARGUMENTS, "pattern length 0");
return 0;
}
/* check if we have already inserted this pattern */
SCACPattern *p = SCACInitHashLookup(ctx, pat, patlen, flags, pid);
if (p == NULL) {
SCLogDebug("Allocing new pattern");
/* p will never be NULL */
p = SCACAllocPattern(mpm_ctx);
p->len = patlen;
p->flags = flags;
p->id = pid;
p->original_pat = SCMalloc(patlen);
if (p->original_pat == NULL)
goto error;
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += patlen;
memcpy(p->original_pat, pat, patlen);
p->ci = SCMalloc(patlen);
if (p->ci == NULL)
goto error;
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += patlen;
memcpy_tolower(p->ci, pat, patlen);
/* setup the case sensitive part of the pattern */
if (p->flags & MPM_PATTERN_FLAG_NOCASE) {
/* nocase means no difference between cs and ci */
p->cs = p->ci;
} else {
if (memcmp(p->ci, pat, p->len) == 0) {
/* no diff between cs and ci: pat is lowercase */
p->cs = p->ci;
} else {
p->cs = SCMalloc(patlen);
if (p->cs == NULL)
goto error;
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += patlen;
memcpy(p->cs, pat, patlen);
}
}
/* put in the pattern hash */
SCACInitHashAdd(ctx, p);
//if (mpm_ctx->pattern_cnt == 65535) {
// SCLogError(SC_ERR_AHO_CORASICK, "Max search words reached. Can't "
// "insert anymore. Exiting");
// exit(EXIT_FAILURE);
//}
mpm_ctx->pattern_cnt++;
if (mpm_ctx->maxlen < patlen)
mpm_ctx->maxlen = patlen;
if (mpm_ctx->minlen == 0) {
mpm_ctx->minlen = patlen;
} else {
if (mpm_ctx->minlen > patlen)
mpm_ctx->minlen = patlen;
}
/* we need the max pat id */
if (pid > ctx->max_pat_id)
ctx->max_pat_id = pid;
}
return 0;
error:
SCACFreePattern(mpm_ctx, p);
return -1;
}
/**
* \internal
* \brief Initialize a new state in the goto and output tables.
*
* \param mpm_ctx Pointer to the mpm context.
*
* \retval The state id, of the newly created state.
*/
static inline int SCACInitNewState(MpmCtx *mpm_ctx)
{
void *ptmp;
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int ascii_code = 0;
int size = 0;
/* reallocate space in the goto table to include a new state */
size = (ctx->state_count + 1) * ctx->single_state_size;
ptmp = SCRealloc(ctx->goto_table, size);
if (ptmp == NULL) {
SCFree(ctx->goto_table);
ctx->goto_table = NULL;
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
ctx->goto_table = ptmp;
/* set all transitions for the newly assigned state as FAIL transitions */
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
ctx->goto_table[ctx->state_count][ascii_code] = SC_AC_FAIL;
}
/* reallocate space in the output table for the new state */
size = (ctx->state_count + 1) * sizeof(SCACOutputTable);
ptmp = SCRealloc(ctx->output_table, size);
if (ptmp == NULL) {
SCFree(ctx->output_table);
ctx->output_table = NULL;
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
ctx->output_table = ptmp;
memset(ctx->output_table + ctx->state_count, 0, sizeof(SCACOutputTable));
/* \todo using it temporarily now during dev, since I have restricted
* state var in SCACCtx->state_table to uint16_t. */
//if (ctx->state_count > 65536) {
// printf("state count exceeded\n");
// exit(EXIT_FAILURE);
//}
return ctx->state_count++;
}
/**
* \internal
* \brief Adds a pid to the output table for a state.
*
* \param state The state to whose output table we should add the pid.
* \param pid The pattern id to add.
* \param mpm_ctx Pointer to the mpm context.
*/
static void SCACSetOutputState(int32_t state, uint32_t pid, MpmCtx *mpm_ctx)
{
void *ptmp;
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
SCACOutputTable *output_state = &ctx->output_table[state];
uint32_t i = 0;
for (i = 0; i < output_state->no_of_entries; i++) {
if (output_state->pids[i] == pid)
return;
}
output_state->no_of_entries++;
ptmp = SCRealloc(output_state->pids,
output_state->no_of_entries * sizeof(uint32_t));
if (ptmp == NULL) {
SCFree(output_state->pids);
output_state->pids = NULL;
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
output_state->pids = ptmp;
output_state->pids[output_state->no_of_entries - 1] = pid;
return;
}
/**
* \brief Helper function used by SCACCreateGotoTable. Adds a pattern to the
* goto table.
*
* \param pattern Pointer to the pattern.
* \param pattern_len Pattern length.
* \param pid The pattern id, that corresponds to this pattern. We
* need it to updated the output table for this pattern.
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACEnter(uint8_t *pattern, uint16_t pattern_len, uint32_t pid,
MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int32_t state = 0;
int32_t newstate = 0;
int i = 0;
int p = 0;
/* walk down the trie till we have a match for the pattern prefix */
state = 0;
for (i = 0; i < pattern_len; i++) {
if (ctx->goto_table[state][pattern[i]] != SC_AC_FAIL) {
state = ctx->goto_table[state][pattern[i]];
} else {
break;
}
}
/* add the non-matching pattern suffix to the trie, from the last state
* we left off */
for (p = i; p < pattern_len; p++) {
newstate = SCACInitNewState(mpm_ctx);
ctx->goto_table[state][pattern[p]] = newstate;
state = newstate;
}
/* add this pattern id, to the output table of the last state, where the
* pattern ends in the trie */
SCACSetOutputState(state, pid, mpm_ctx);
return;
}
/**
* \internal
* \brief Create the goto table.
*
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACCreateGotoTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
uint32_t i = 0;
/* add each pattern to create the goto table */
for (i = 0; i < mpm_ctx->pattern_cnt; i++) {
SCACEnter(ctx->parray[i]->ci, ctx->parray[i]->len,
ctx->parray[i]->id, mpm_ctx);
}
int ascii_code = 0;
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
if (ctx->goto_table[0][ascii_code] == SC_AC_FAIL) {
ctx->goto_table[0][ascii_code] = 0;
}
}
return;
}
static inline void SCACDetermineLevel1Gap(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
uint32_t u = 0;
int map[256];
memset(map, 0, sizeof(map));
for (u = 0; u < mpm_ctx->pattern_cnt; u++)
map[ctx->parray[u]->ci[0]] = 1;
for (u = 0; u < 256; u++) {
if (map[u] == 0)
continue;
int32_t newstate = SCACInitNewState(mpm_ctx);
ctx->goto_table[0][u] = newstate;
}
return;
}
static inline int SCACStateQueueIsEmpty(StateQueue *q)
{
if (q->top == q->bot)
return 1;
else
return 0;
}
static inline void SCACEnqueue(StateQueue *q, int32_t state)
{
int i = 0;
/*if we already have this */
for (i = q->bot; i < q->top; i++) {
if (q->store[i] == state)
return;
}
q->store[q->top++] = state;
if (q->top == STATE_QUEUE_CONTAINER_SIZE)
q->top = 0;
if (q->top == q->bot) {
SCLogCritical(SC_ERR_AHO_CORASICK, "Just ran out of space in the queue. "
"Fatal Error. Exiting. Please file a bug report on this");
exit(EXIT_FAILURE);
}
return;
}
static inline int32_t SCACDequeue(StateQueue *q)
{
if (q->bot == STATE_QUEUE_CONTAINER_SIZE)
q->bot = 0;
if (q->bot == q->top) {
SCLogCritical(SC_ERR_AHO_CORASICK, "StateQueue behaving weirdly. "
"Fatal Error. Exiting. Please file a bug report on this");
exit(EXIT_FAILURE);
}
return q->store[q->bot++];
}
/*
#define SCACStateQueueIsEmpty(q) (((q)->top == (q)->bot) ? 1 : 0)
#define SCACEnqueue(q, state) do { \
int i = 0; \
\
for (i = (q)->bot; i < (q)->top; i++) { \
if ((q)->store[i] == state) \
return; \
} \
\
(q)->store[(q)->top++] = state; \
\
if ((q)->top == STATE_QUEUE_CONTAINER_SIZE) \
(q)->top = 0; \
\
if ((q)->top == (q)->bot) { \
SCLogCritical(SC_ERR_AHO_CORASICK, "Just ran out of space in the queue. " \
"Fatal Error. Exiting. Please file a bug report on this"); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define SCACDequeue(q) ( (((q)->bot == STATE_QUEUE_CONTAINER_SIZE)? ((q)->bot = 0): 0), \
(((q)->bot == (q)->top) ? \
(printf("StateQueue behaving " \
"weirdly. Fatal Error. Exiting. Please " \
"file a bug report on this"), \
exit(EXIT_FAILURE)) : 0), \
(q)->store[(q)->bot++]) \
*/
/**
* \internal
* \brief Club the output data from 2 states and store it in the 1st state.
* dst_state_data = {dst_state_data} UNION {src_state_data}
*
* \param dst_state First state(also the destination) for the union operation.
* \param src_state Second state for the union operation.
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACClubOutputStates(int32_t dst_state, int32_t src_state,
MpmCtx *mpm_ctx)
{
void *ptmp;
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
uint32_t i = 0;
uint32_t j = 0;
SCACOutputTable *output_dst_state = &ctx->output_table[dst_state];
SCACOutputTable *output_src_state = &ctx->output_table[src_state];
for (i = 0; i < output_src_state->no_of_entries; i++) {
for (j = 0; j < output_dst_state->no_of_entries; j++) {
if (output_src_state->pids[i] == output_dst_state->pids[j]) {
break;
}
}
if (j == output_dst_state->no_of_entries) {
output_dst_state->no_of_entries++;
ptmp = SCRealloc(output_dst_state->pids,
(output_dst_state->no_of_entries * sizeof(uint32_t)));
if (ptmp == NULL) {
SCFree(output_dst_state->pids);
output_dst_state->pids = NULL;
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
output_dst_state->pids = ptmp;
output_dst_state->pids[output_dst_state->no_of_entries - 1] =
output_src_state->pids[i];
}
}
return;
}
/**
* \internal
* \brief Create the failure table.
*
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACCreateFailureTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int ascii_code = 0;
int32_t state = 0;
int32_t r_state = 0;
StateQueue q;
memset(&q, 0, sizeof(StateQueue));
/* allot space for the failure table. A failure entry in the table for
* every state(SCACCtx->state_count) */
ctx->failure_table = SCMalloc(ctx->state_count * sizeof(int32_t));
if (ctx->failure_table == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
memset(ctx->failure_table, 0, ctx->state_count * sizeof(int32_t));
/* add the failure transitions for the 0th state, and add every non-fail
* transition from the 0th state to the queue for further processing
* of failure states */
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
int32_t temp_state = ctx->goto_table[0][ascii_code];
if (temp_state != 0) {
SCACEnqueue(&q, temp_state);
ctx->failure_table[temp_state] = 0;
}
}
while (!SCACStateQueueIsEmpty(&q)) {
/* pick up every state from the queue and add failure transitions */
r_state = SCACDequeue(&q);
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
int32_t temp_state = ctx->goto_table[r_state][ascii_code];
if (temp_state == SC_AC_FAIL)
continue;
SCACEnqueue(&q, temp_state);
state = ctx->failure_table[r_state];
while(ctx->goto_table[state][ascii_code] == SC_AC_FAIL)
state = ctx->failure_table[state];
ctx->failure_table[temp_state] = ctx->goto_table[state][ascii_code];
SCACClubOutputStates(temp_state, ctx->failure_table[temp_state],
mpm_ctx);
}
}
return;
}
/**
* \internal
* \brief Create the delta table.
*
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACCreateDeltaTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int ascii_code = 0;
int32_t r_state = 0;
if ((ctx->state_count < 32767) || construct_both_16_and_32_state_tables) {
ctx->state_table_u16 = SCMalloc(ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U16) * 256);
if (ctx->state_table_u16 == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
memset(ctx->state_table_u16, 0,
ctx->state_count * sizeof(SC_AC_STATE_TYPE_U16) * 256);
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += (ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U16) * 256);
StateQueue q;
memset(&q, 0, sizeof(StateQueue));
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
SC_AC_STATE_TYPE_U16 temp_state = ctx->goto_table[0][ascii_code];
ctx->state_table_u16[0][ascii_code] = temp_state;
if (temp_state != 0)
SCACEnqueue(&q, temp_state);
}
while (!SCACStateQueueIsEmpty(&q)) {
r_state = SCACDequeue(&q);
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
int32_t temp_state = ctx->goto_table[r_state][ascii_code];
if (temp_state != SC_AC_FAIL) {
SCACEnqueue(&q, temp_state);
ctx->state_table_u16[r_state][ascii_code] = temp_state;
} else {
ctx->state_table_u16[r_state][ascii_code] =
ctx->state_table_u16[ctx->failure_table[r_state]][ascii_code];
}
}
}
}
if (!(ctx->state_count < 32767) || construct_both_16_and_32_state_tables) {
/* create space for the state table. We could have used the existing goto
* table, but since we have it set to hold 32 bit state values, we will create
* a new state table here of type SC_AC_STATE_TYPE(current set to uint16_t) */
ctx->state_table_u32 = SCMalloc(ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U32) * 256);
if (ctx->state_table_u32 == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
memset(ctx->state_table_u32, 0,
ctx->state_count * sizeof(SC_AC_STATE_TYPE_U32) * 256);
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += (ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U32) * 256);
StateQueue q;
memset(&q, 0, sizeof(StateQueue));
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
SC_AC_STATE_TYPE_U32 temp_state = ctx->goto_table[0][ascii_code];
ctx->state_table_u32[0][ascii_code] = temp_state;
if (temp_state != 0)
SCACEnqueue(&q, temp_state);
}
while (!SCACStateQueueIsEmpty(&q)) {
r_state = SCACDequeue(&q);
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
int32_t temp_state = ctx->goto_table[r_state][ascii_code];
if (temp_state != SC_AC_FAIL) {
SCACEnqueue(&q, temp_state);
ctx->state_table_u32[r_state][ascii_code] = temp_state;
} else {
ctx->state_table_u32[r_state][ascii_code] =
ctx->state_table_u32[ctx->failure_table[r_state]][ascii_code];
}
}
}
}
return;
}
static inline void SCACClubOutputStatePresenceWithDeltaTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int ascii_code = 0;
uint32_t state = 0;
uint32_t temp_state = 0;
if ((ctx->state_count < 32767) || construct_both_16_and_32_state_tables) {
for (state = 0; state < ctx->state_count; state++) {
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
temp_state = ctx->state_table_u16[state & 0x7FFF][ascii_code];
if (ctx->output_table[temp_state & 0x7FFF].no_of_entries != 0)
ctx->state_table_u16[state & 0x7FFF][ascii_code] |= (1 << 15);
}
}
}
if (!(ctx->state_count < 32767) || construct_both_16_and_32_state_tables) {
for (state = 0; state < ctx->state_count; state++) {
for (ascii_code = 0; ascii_code < 256; ascii_code++) {
temp_state = ctx->state_table_u32[state & 0x00FFFFFF][ascii_code];
if (ctx->output_table[temp_state & 0x00FFFFFF].no_of_entries != 0)
ctx->state_table_u32[state & 0x00FFFFFF][ascii_code] |= (1 << 24);
}
}
}
return;
}
static inline void SCACInsertCaseSensitiveEntriesForPatterns(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
uint32_t state = 0;
uint32_t k = 0;
for (state = 0; state < ctx->state_count; state++) {
if (ctx->output_table[state].no_of_entries == 0)
continue;
for (k = 0; k < ctx->output_table[state].no_of_entries; k++) {
if (ctx->pid_pat_list[ctx->output_table[state].pids[k]].cs != NULL) {
ctx->output_table[state].pids[k] &= 0x0000FFFF;
ctx->output_table[state].pids[k] |= 1 << 16;
}
}
}
return;
}
#if 0
static void SCACPrintDeltaTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int i = 0, j = 0;
printf("##############Delta Table##############\n");
for (i = 0; i < ctx->state_count; i++) {
printf("%d: \n", i);
for (j = 0; j < 256; j++) {
if (SCACGetDelta(i, j, mpm_ctx) != 0) {
printf(" %c -> %d\n", j, SCACGetDelta(i, j, mpm_ctx));
}
}
}
return;
}
#endif
/**
* \brief Process the patterns and prepare the state table.
*
* \param mpm_ctx Pointer to the mpm context.
*/
static inline void SCACPrepareStateTable(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
/* create the 0th state in the goto table and output_table */
SCACInitNewState(mpm_ctx);
SCACDetermineLevel1Gap(mpm_ctx);
/* create the goto table */
SCACCreateGotoTable(mpm_ctx);
/* create the failure table */
SCACCreateFailureTable(mpm_ctx);
/* create the final state(delta) table */
SCACCreateDeltaTable(mpm_ctx);
/* club the output state presence with delta transition entries */
SCACClubOutputStatePresenceWithDeltaTable(mpm_ctx);
/* club nocase entries */
SCACInsertCaseSensitiveEntriesForPatterns(mpm_ctx);
#if 0
SCACPrintDeltaTable(mpm_ctx);
#endif
/* we don't need these anymore */
SCFree(ctx->goto_table);
ctx->goto_table = NULL;
SCFree(ctx->failure_table);
ctx->failure_table = NULL;
return;
}
/**
* \brief Process the patterns added to the mpm, and create the internal tables.
*
* \param mpm_ctx Pointer to the mpm context.
*/
int SCACPreparePatterns(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (mpm_ctx->pattern_cnt == 0 || ctx->init_hash == NULL) {
SCLogDebug("no patterns supplied to this mpm_ctx");
return 0;
}
/* alloc the pattern array */
ctx->parray = (SCACPattern **)SCMalloc(mpm_ctx->pattern_cnt *
sizeof(SCACPattern *));
if (ctx->parray == NULL)
goto error;
memset(ctx->parray, 0, mpm_ctx->pattern_cnt * sizeof(SCACPattern *));
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += (mpm_ctx->pattern_cnt * sizeof(SCACPattern *));
/* populate it with the patterns in the hash */
uint32_t i = 0, p = 0;
for (i = 0; i < INIT_HASH_SIZE; i++) {
SCACPattern *node = ctx->init_hash[i], *nnode = NULL;
while(node != NULL) {
nnode = node->next;
node->next = NULL;
ctx->parray[p++] = node;
node = nnode;
}
}
/* we no longer need the hash, so free it's memory */
SCFree(ctx->init_hash);
ctx->init_hash = NULL;
/* the memory consumed by a single state in our goto table */
ctx->single_state_size = sizeof(int32_t) * 256;
/* handle no case patterns */
ctx->pid_pat_list = SCMalloc((ctx->max_pat_id + 1)* sizeof(SCACPatternList));
if (ctx->pid_pat_list == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
memset(ctx->pid_pat_list, 0, (ctx->max_pat_id + 1) * sizeof(SCACPatternList));
for (i = 0; i < mpm_ctx->pattern_cnt; i++) {
if (!(ctx->parray[i]->flags & MPM_PATTERN_FLAG_NOCASE)) {
ctx->pid_pat_list[ctx->parray[i]->id].cs = SCMalloc(ctx->parray[i]->len);
if (ctx->pid_pat_list[ctx->parray[i]->id].cs == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory");
exit(EXIT_FAILURE);
}
memcpy(ctx->pid_pat_list[ctx->parray[i]->id].cs,
ctx->parray[i]->original_pat, ctx->parray[i]->len);
ctx->pid_pat_list[ctx->parray[i]->id].patlen = ctx->parray[i]->len;
}
}
/* prepare the state table required by AC */
SCACPrepareStateTable(mpm_ctx);
#ifdef __SC_CUDA_SUPPORT__
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
int r = SCCudaMemAlloc(&ctx->state_table_u32_cuda,
ctx->state_count * sizeof(unsigned int) * 256);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemcpyHtoD(ctx->state_table_u32_cuda,
ctx->state_table_u32,
ctx->state_count * sizeof(unsigned int) * 256);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemcpyHtoD failure.");
exit(EXIT_FAILURE);
}
}
#endif
/* free all the stored patterns. Should save us a good 100-200 mbs */
for (i = 0; i < mpm_ctx->pattern_cnt; i++) {
if (ctx->parray[i] != NULL) {
SCACFreePattern(mpm_ctx, ctx->parray[i]);
}
}
SCFree(ctx->parray);
ctx->parray = NULL;
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= (mpm_ctx->pattern_cnt * sizeof(SCACPattern *));
return 0;
error:
return -1;
}
/**
* \brief Init the mpm thread context.
*
* \param mpm_ctx Pointer to the mpm context.
* \param mpm_thread_ctx Pointer to the mpm thread context.
* \param matchsize We don't need this.
*/
void SCACInitThreadCtx(MpmCtx *mpm_ctx, MpmThreadCtx *mpm_thread_ctx, uint32_t matchsize)
{
memset(mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
mpm_thread_ctx->ctx = SCMalloc(sizeof(SCACThreadCtx));
if (mpm_thread_ctx->ctx == NULL) {
exit(EXIT_FAILURE);
}
memset(mpm_thread_ctx->ctx, 0, sizeof(SCACThreadCtx));
mpm_thread_ctx->memory_cnt++;
mpm_thread_ctx->memory_size += sizeof(SCACThreadCtx);
return;
}
/**
* \brief Initialize the AC context.
*
* \param mpm_ctx Mpm context.
*/
void SCACInitCtx(MpmCtx *mpm_ctx)
{
if (mpm_ctx->ctx != NULL)
return;
mpm_ctx->ctx = SCMalloc(sizeof(SCACCtx));
if (mpm_ctx->ctx == NULL) {
exit(EXIT_FAILURE);
}
memset(mpm_ctx->ctx, 0, sizeof(SCACCtx));
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size += sizeof(SCACCtx);
/* initialize the hash we use to speed up pattern insertions */
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
ctx->init_hash = SCMalloc(sizeof(SCACPattern *) * INIT_HASH_SIZE);
if (ctx->init_hash == NULL) {
exit(EXIT_FAILURE);
}
memset(ctx->init_hash, 0, sizeof(SCACPattern *) * INIT_HASH_SIZE);
/* get conf values for AC from our yaml file. We have no conf values for
* now. We will certainly need this, as we develop the algo */
SCACGetConfig();
SCReturn;
}
/**
* \brief Destroy the mpm thread context.
*
* \param mpm_ctx Pointer to the mpm context.
* \param mpm_thread_ctx Pointer to the mpm thread context.
*/
void SCACDestroyThreadCtx(MpmCtx *mpm_ctx, MpmThreadCtx *mpm_thread_ctx)
{
SCACPrintSearchStats(mpm_thread_ctx);
if (mpm_thread_ctx->ctx != NULL) {
SCFree(mpm_thread_ctx->ctx);
mpm_thread_ctx->ctx = NULL;
mpm_thread_ctx->memory_cnt--;
mpm_thread_ctx->memory_size -= sizeof(SCACThreadCtx);
}
return;
}
/**
* \brief Destroy the mpm context.
*
* \param mpm_ctx Pointer to the mpm context.
*/
void SCACDestroyCtx(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx == NULL)
return;
if (ctx->init_hash != NULL) {
SCFree(ctx->init_hash);
ctx->init_hash = NULL;
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= (INIT_HASH_SIZE * sizeof(SCACPattern *));
}
if (ctx->parray != NULL) {
uint32_t i;
for (i = 0; i < mpm_ctx->pattern_cnt; i++) {
if (ctx->parray[i] != NULL) {
SCACFreePattern(mpm_ctx, ctx->parray[i]);
}
}
SCFree(ctx->parray);
ctx->parray = NULL;
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= (mpm_ctx->pattern_cnt * sizeof(SCACPattern *));
}
if (ctx->state_table_u16 != NULL) {
SCFree(ctx->state_table_u16);
ctx->state_table_u16 = NULL;
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size -= (ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U16) * 256);
}
if (ctx->state_table_u32 != NULL) {
SCFree(ctx->state_table_u32);
ctx->state_table_u32 = NULL;
mpm_ctx->memory_cnt++;
mpm_ctx->memory_size -= (ctx->state_count *
sizeof(SC_AC_STATE_TYPE_U32) * 256);
}
if (ctx->output_table != NULL) {
uint32_t state_count;
for (state_count = 0; state_count < ctx->state_count; state_count++) {
if (ctx->output_table[state_count].pids != NULL) {
SCFree(ctx->output_table[state_count].pids);
}
}
SCFree(ctx->output_table);
}
if (ctx->pid_pat_list != NULL) {
int i;
for (i = 0; i < (ctx->max_pat_id + 1); i++) {
if (ctx->pid_pat_list[i].cs != NULL)
SCFree(ctx->pid_pat_list[i].cs);
}
SCFree(ctx->pid_pat_list);
}
SCFree(mpm_ctx->ctx);
mpm_ctx->memory_cnt--;
mpm_ctx->memory_size -= sizeof(SCACCtx);
return;
}
/**
* \brief The aho corasick search function.
*
* \param mpm_ctx Pointer to the mpm context.
* \param mpm_thread_ctx Pointer to the mpm thread context.
* \param pmq Pointer to the Pattern Matcher Queue to hold
* search matches.
* \param buf Buffer to be searched.
* \param buflen Buffer length.
*
* \retval matches Match count.
*/
uint32_t SCACSearch(MpmCtx *mpm_ctx, MpmThreadCtx *mpm_thread_ctx,
PatternMatcherQueue *pmq, uint8_t *buf, uint16_t buflen)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
int i = 0;
int matches = 0;
/* \todo tried loop unrolling with register var, with no perf increase. Need
* to dig deeper */
/* \todo Change it for stateful MPM. Supply the state using mpm_thread_ctx */
SCACPatternList *pid_pat_list = ctx->pid_pat_list;
if (ctx->state_count < 32767) {
register SC_AC_STATE_TYPE_U16 state = 0;
SC_AC_STATE_TYPE_U16 (*state_table_u16)[256] = ctx->state_table_u16;
for (i = 0; i < buflen; i++) {
state = state_table_u16[state & 0x7FFF][u8_tolower(buf[i])];
if (state & 0x8000) {
uint32_t no_of_entries = ctx->output_table[state & 0x7FFF].no_of_entries;
uint32_t *pids = ctx->output_table[state & 0x7FFF].pids;
uint32_t k;
for (k = 0; k < no_of_entries; k++) {
if (pids[k] & 0xFFFF0000) {
if (SCMemcmp(pid_pat_list[pids[k] & 0x0000FFFF].cs,
buf + i - pid_pat_list[pids[k] & 0x0000FFFF].patlen + 1,
pid_pat_list[pids[k] & 0x0000FFFF].patlen) != 0) {
/* inside loop */
continue;
}
if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k] & 0x0000FFFF;
}
matches++;
} else {
if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
}
matches++;
}
//loop1:
//;
}
}
} /* for (i = 0; i < buflen; i++) */
} else {
register SC_AC_STATE_TYPE_U32 state = 0;
SC_AC_STATE_TYPE_U32 (*state_table_u32)[256] = ctx->state_table_u32;
for (i = 0; i < buflen; i++) {
state = state_table_u32[state & 0x00FFFFFF][u8_tolower(buf[i])];
if (state & 0xFF000000) {
uint32_t no_of_entries = ctx->output_table[state & 0x00FFFFFF].no_of_entries;
uint32_t *pids = ctx->output_table[state & 0x00FFFFFF].pids;
uint32_t k;
for (k = 0; k < no_of_entries; k++) {
if (pids[k] & 0xFFFF0000) {
if (SCMemcmp(pid_pat_list[pids[k] & 0x0000FFFF].cs,
buf + i - pid_pat_list[pids[k] & 0x0000FFFF].patlen + 1,
pid_pat_list[pids[k] & 0x0000FFFF].patlen) != 0) {
/* inside loop */
continue;
}
if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k] & 0x0000FFFF;
}
matches++;
} else {
if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
}
matches++;
}
//loop1:
//;
}
}
} /* for (i = 0; i < buflen; i++) */
}
return matches;
}
/**
* \brief Add a case insensitive pattern. Although we have different calls for
* adding case sensitive and insensitive patterns, we make a single call
* for either case. No special treatment for either case.
*
* \param mpm_ctx Pointer to the mpm context.
* \param pat The pattern to add.
* \param patnen The pattern length.
* \param offset Ignored.
* \param depth Ignored.
* \param pid The pattern id.
* \param sid Ignored.
* \param flags Flags associated with this pattern.
*
* \retval 0 On success.
* \retval -1 On failure.
*/
int SCACAddPatternCI(MpmCtx *mpm_ctx, uint8_t *pat, uint16_t patlen,
uint16_t offset, uint16_t depth, uint32_t pid,
uint32_t sid, uint8_t flags)
{
flags |= MPM_PATTERN_FLAG_NOCASE;
return SCACAddPattern(mpm_ctx, pat, patlen, offset, depth, pid, sid, flags);
}
/**
* \brief Add a case sensitive pattern. Although we have different calls for
* adding case sensitive and insensitive patterns, we make a single call
* for either case. No special treatment for either case.
*
* \param mpm_ctx Pointer to the mpm context.
* \param pat The pattern to add.
* \param patnen The pattern length.
* \param offset Ignored.
* \param depth Ignored.
* \param pid The pattern id.
* \param sid Ignored.
* \param flags Flags associated with this pattern.
*
* \retval 0 On success.
* \retval -1 On failure.
*/
int SCACAddPatternCS(MpmCtx *mpm_ctx, uint8_t *pat, uint16_t patlen,
uint16_t offset, uint16_t depth, uint32_t pid,
uint32_t sid, uint8_t flags)
{
return SCACAddPattern(mpm_ctx, pat, patlen, offset, depth, pid, sid, flags);
}
void SCACPrintSearchStats(MpmThreadCtx *mpm_thread_ctx)
{
#ifdef SC_AC_COUNTERS
SCACThreadCtx *ctx = (SCACThreadCtx *)mpm_thread_ctx->ctx;
printf("AC Thread Search stats (ctx %p)\n", ctx);
printf("Total calls: %" PRIu32 "\n", ctx->total_calls);
printf("Total matches: %" PRIu64 "\n", ctx->total_matches);
#endif /* SC_AC_COUNTERS */
return;
}
void SCACPrintInfo(MpmCtx *mpm_ctx)
{
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
printf("MPM AC Information:\n");
printf("Memory allocs: %" PRIu32 "\n", mpm_ctx->memory_cnt);
printf("Memory alloced: %" PRIu32 "\n", mpm_ctx->memory_size);
printf(" Sizeof:\n");
printf(" MpmCtx %" PRIuMAX "\n", (uintmax_t)sizeof(MpmCtx));
printf(" SCACCtx: %" PRIuMAX "\n", (uintmax_t)sizeof(SCACCtx));
printf(" SCACPattern %" PRIuMAX "\n", (uintmax_t)sizeof(SCACPattern));
printf(" SCACPattern %" PRIuMAX "\n", (uintmax_t)sizeof(SCACPattern));
printf("Unique Patterns: %" PRIu32 "\n", mpm_ctx->pattern_cnt);
printf("Smallest: %" PRIu32 "\n", mpm_ctx->minlen);
printf("Largest: %" PRIu32 "\n", mpm_ctx->maxlen);
printf("Total states in the state table: %" PRIu32 "\n", ctx->state_count);
printf("\n");
return;
}
/****************************Cuda side of things****************************/
#ifdef __SC_CUDA_SUPPORT__
/* \todo Technically it's generic to all mpms, but since we use ac only, the
* code internally directly references ac and hence it has found its
* home in this file, instead of util-mpm.c
*/
void DetermineCudaStateTableSize(DetectEngineCtx *de_ctx)
{
MpmCtx *mpm_ctx = NULL;
int ac_16_tables = 0;
int ac_32_tables = 0;
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_proto_tcp_packet, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_proto_tcp_packet, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_proto_udp_packet, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_proto_udp_packet, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_proto_other_packet, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_uri, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_uri, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hcbd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hcbd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hhd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hhd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hrhd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hrhd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hmd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hmd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hcd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hcd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hrud, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hrud, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_stream, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_stream, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hsmd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hsmd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hscd, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_hscd, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_huad, 0);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
mpm_ctx = MpmFactoryGetMpmCtxForProfile(de_ctx, de_ctx->sgh_mpm_context_huad, 1);
if (mpm_ctx->mpm_type == MPM_AC_CUDA) {
SCACCtx *ctx = (SCACCtx *)mpm_ctx->ctx;
if (ctx->state_count < 32767)
ac_16_tables++;
else
ac_32_tables++;
}
if (ac_16_tables > 0 && ac_32_tables > 0)
SCACConstructBoth16and32StateTables();
SCLogDebug("Total mpm ac 16 bit state tables - %d\n", ac_16_tables);
SCLogDebug("Total mpm ac 32 bit state tables - %d\n", ac_32_tables);
}
/* \todos
* - Use texture memory - Can we fit all the arrays into a 3d texture.
* Texture memory definitely offers slightly better performance even
* on gpus that offer cache for global memory.
* - Packetpool - modify to support > 65k max pending packets. We are
* hitting packetpool limit currently even with 65k packets.
* - Use streams. We have tried overlapping parsing results from the
* previous call with invoking the next call.
* - Offer higher priority to decode threads.
* - Modify pcap file mode to support reading from multiple pcap files
* and hence we will have multiple receive threads.
* - Split state table into many small pieces and have multiple threads
* run each small state table on the same payload.
* - Used a config peference of l1 over shared memory with no noticeable
* perf increase. Explore it in detail over cards/architectures.
* - Constant memory performance sucked. Explore it in detail.
* - Currently all our state tables are small. Implement 16 bit state
* tables on priority.
* - Introduce profiling.
* - Retrieve sgh before buffer packet.
* - Buffer smsgs too.
*/
void SCACConstructBoth16and32StateTables(void)
{
construct_both_16_and_32_state_tables = 1;
return;
}
/* \todo Reduce offset buffer size. Probably a 100,000 entry would be sufficient. */
static void *SCACCudaDispatcher(void *arg)
{
#define BLOCK_SIZE 32
int r = 0;
ThreadVars *tv = (ThreadVars *)arg;
MpmCudaConf *conf = CudaHandlerGetCudaProfile("mpm");
uint32_t sleep_interval_ms = conf->batching_timeout;
SCLogInfo("AC Cuda Mpm Dispatcher using a timeout of "
"\"%"PRIu32"\" micro-seconds", sleep_interval_ms);
CudaBufferData *cb_data =
CudaHandlerModuleGetData(MPM_AC_CUDA_MODULE_NAME,
MPM_AC_CUDA_MODULE_CUDA_BUFFER_NAME);
CUcontext cuda_context =
CudaHandlerModuleGetContext(MPM_AC_CUDA_MODULE_NAME, conf->device_id);
if (cuda_context == 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "context is NULL.");
exit(EXIT_FAILURE);
}
r = SCCudaCtxPushCurrent(cuda_context);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "context push failed.");
exit(EXIT_FAILURE);
}
CUmodule cuda_module = 0;
if (CudaHandlerGetCudaModule(&cuda_module, "util-mpm-ac-cuda-kernel") < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error retrieving cuda module.");
exit(EXIT_FAILURE);
}
CUfunction kernel = 0;
#if __WORDSIZE==64
if (SCCudaModuleGetFunction(&kernel, cuda_module, "SCACCudaSearch64") == -1) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error retrieving kernel");
exit(EXIT_FAILURE);
}
#else
if (SCCudaModuleGetFunction(&kernel, cuda_module, "SCACCudaSearch32") == -1) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error retrieving kernel");
exit(EXIT_FAILURE);
}
#endif
uint8_t g_u8_lowercasetable[256];
for (int c = 0; c < 256; c++)
g_u8_lowercasetable[c] = tolower((uint8_t)c);
CUdeviceptr cuda_g_u8_lowercasetable_d = 0;
CUdeviceptr cuda_packets_buffer_d = 0;
CUdeviceptr cuda_offset_buffer_d = 0;
CUdeviceptr cuda_results_buffer_d = 0;
uint32_t *cuda_results_buffer_h = NULL;
r = SCCudaMemAlloc(&cuda_g_u8_lowercasetable_d, sizeof(g_u8_lowercasetable));
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemcpyHtoD(cuda_g_u8_lowercasetable_d, g_u8_lowercasetable, sizeof(g_u8_lowercasetable));
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemcpyHtoD failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemAlloc(&cuda_packets_buffer_d, conf->gpu_transfer_size);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemAlloc(&cuda_offset_buffer_d, conf->gpu_transfer_size * 4);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemAlloc(&cuda_results_buffer_d, conf->gpu_transfer_size * 8);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemAllocHost((void **)&cuda_results_buffer_h, conf->gpu_transfer_size * 8);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemAlloc failure.");
exit(EXIT_FAILURE);
}
CudaBufferCulledInfo cb_culled_info;
memset(&cb_culled_info, 0, sizeof(cb_culled_info));
TmThreadsSetFlag(tv, THV_INIT_DONE);
while (1) {
if (TmThreadsCheckFlag(tv, THV_KILL))
break;
usleep(sleep_interval_ms);
/**************** 1 SEND ****************/
CudaBufferCullCompletedSlices(cb_data, &cb_culled_info, conf->gpu_transfer_size);
if (cb_culled_info.no_of_items == 0)
continue;
#if 0
SCLogInfo("1 - cb_culled_info.no_of_items-%"PRIu32" "
"cb_culled_info.buffer_len - %"PRIu32" "
"cb_culled_info.average size - %f "
"cb_culled_info.d_buffer_start_offset - %"PRIu32" "
"cb_culled_info.op_buffer_start_offset - %"PRIu32" "
"cb_data.no_of_items - %"PRIu32" "
"cb_data.d_buffer_read - %"PRIu32" "
"cb_data.d_buffer_write - %"PRIu32" "
"cb_data.op_buffer_read - %"PRIu32" "
"cb_data.op_buffer_write - %"PRIu32"\n",
cb_culled_info.no_of_items,
cb_culled_info.d_buffer_len,
cb_culled_info.d_buffer_len / (float)cb_culled_info.no_of_items,
cb_culled_info.d_buffer_start_offset,
cb_culled_info.op_buffer_start_offset,
cb_data->no_of_items,
cb_data->d_buffer_read,
cb_data->d_buffer_write,
cb_data->op_buffer_read,
cb_data->op_buffer_write);
#endif
r = SCCudaMemcpyHtoDAsync(cuda_packets_buffer_d, (cb_data->d_buffer + cb_culled_info.d_buffer_start_offset), cb_culled_info.d_buffer_len, 0);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemcpyHtoD failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemcpyHtoDAsync(cuda_offset_buffer_d, (cb_data->o_buffer + cb_culled_info.op_buffer_start_offset), sizeof(uint32_t) * cb_culled_info.no_of_items, 0);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemcpyHtoD failure.");
exit(EXIT_FAILURE);
}
void *args[] = { &cuda_packets_buffer_d,
&cb_culled_info.d_buffer_start_offset,
&cuda_offset_buffer_d,
&cuda_results_buffer_d,
&cb_culled_info.no_of_items,
&cuda_g_u8_lowercasetable_d };
r = SCCudaLaunchKernel(kernel,
(cb_culled_info.no_of_items / BLOCK_SIZE) + 1, 1, 1,
BLOCK_SIZE, 1, 1,
0, 0,
args, NULL);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaLaunchKernel failure.");
exit(EXIT_FAILURE);
}
r = SCCudaMemcpyDtoHAsync(cuda_results_buffer_h, cuda_results_buffer_d, sizeof(uint32_t) * (cb_culled_info.d_buffer_len * 2), 0);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaMemcpyDtoH failure.");
exit(EXIT_FAILURE);
}
/**************** 1 SYNCHRO ****************/
r = SCCudaCtxSynchronize();
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "SCCudaCtxSynchronize failure.");
exit(EXIT_FAILURE);
}
/************* 1 Parse Results ************/
uint32_t i_op_start_offset = cb_culled_info.op_buffer_start_offset;
uint32_t no_of_items = cb_culled_info.no_of_items;
uint32_t *o_buffer = cb_data->o_buffer;
uint32_t d_buffer_start_offset = cb_culled_info.d_buffer_start_offset;
for (uint32_t i = 0; i < no_of_items; i++, i_op_start_offset++) {
Packet *p = (Packet *)cb_data->p_buffer[i_op_start_offset];
p->cuda_pkt_vars.cuda_gpu_matches =
cuda_results_buffer_h[((o_buffer[i_op_start_offset] - d_buffer_start_offset) * 2)];
if (p->cuda_pkt_vars.cuda_gpu_matches != 0) {
memcpy(p->cuda_pkt_vars.cuda_results,
cuda_results_buffer_h +
((o_buffer[i_op_start_offset] - d_buffer_start_offset) * 2),
(cuda_results_buffer_h[((o_buffer[i_op_start_offset] -
d_buffer_start_offset) * 2)] * sizeof(uint32_t)) + 4);
}
SCMutexLock(&p->cuda_pkt_vars.cuda_mutex);
p->cuda_pkt_vars.cuda_done = 1;
SCMutexUnlock(&p->cuda_pkt_vars.cuda_mutex);
SCCondSignal(&p->cuda_pkt_vars.cuda_cond);
}
if (no_of_items != 0)
CudaBufferReportCulledConsumption(cb_data, &cb_culled_info);
} /* while (1) */
r = SCCudaModuleUnload(cuda_module);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error unloading cuda module.");
exit(EXIT_FAILURE);
}
r = SCCudaMemFree(cuda_packets_buffer_d);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda device memory.");
exit(EXIT_FAILURE);
}
r = SCCudaMemFree(cuda_offset_buffer_d);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda device memory.");
exit(EXIT_FAILURE);
}
r = SCCudaMemFree(cuda_results_buffer_d);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda device memory.");
exit(EXIT_FAILURE);
}
r = SCCudaMemFreeHost(cuda_results_buffer_h);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda host memory.");
exit(EXIT_FAILURE);
}
TmThreadsSetFlag(tv, THV_RUNNING_DONE);
TmThreadWaitForFlag(tv, THV_DEINIT);
TmThreadsSetFlag(tv, THV_CLOSED);
return NULL;
#undef BLOCK_SIZE
}
uint32_t SCACCudaPacketResultsProcessing(Packet *p, MpmCtx *mpm_ctx,
PatternMatcherQueue *pmq)
{
uint32_t u = 0;
while (!p->cuda_pkt_vars.cuda_done) {
SCMutexLock(&p->cuda_pkt_vars.cuda_mutex);
if (p->cuda_pkt_vars.cuda_done) {
SCMutexUnlock(&p->cuda_pkt_vars.cuda_mutex);
break;
} else {
SCCondWait(&p->cuda_pkt_vars.cuda_cond, &p->cuda_pkt_vars.cuda_mutex);
SCMutexUnlock(&p->cuda_pkt_vars.cuda_mutex);
}
} /* while */
p->cuda_pkt_vars.cuda_done = 0;
p->cuda_pkt_vars.cuda_mpm_enabled = 0;
uint32_t cuda_matches = p->cuda_pkt_vars.cuda_gpu_matches;
if (cuda_matches == 0)
return 0;
uint32_t matches = 0;
uint32_t *results = p->cuda_pkt_vars.cuda_results + 1;
uint8_t *buf = p->payload;
SCACCtx *ctx = mpm_ctx->ctx;
SCACOutputTable *output_table = ctx->output_table;
SCACPatternList *pid_pat_list = ctx->pid_pat_list;
for (u = 0; u < cuda_matches; u += 2) {
uint32_t offset = results[u];
uint32_t state = results[u + 1];
/* we should technically be doing state & 0x00FFFFFF, but we don't
* since the cuda kernel does that for us */
uint32_t no_of_entries = output_table[state].no_of_entries;
/* we should technically be doing state & 0x00FFFFFF, but we don't
* since the cuda kernel does that for us */
uint32_t *pids = output_table[state].pids;
uint32_t k;
/* note that this is not a verbatim copy from SCACSearch(). We
* don't copy the pattern id into the pattern_id_array. That's
* the only change */
for (k = 0; k < no_of_entries; k++) {
if (pids[k] & 0xFFFF0000) {
if (SCMemcmp(pid_pat_list[pids[k] & 0x0000FFFF].cs,
buf + offset - pid_pat_list[pids[k] & 0x0000FFFF].patlen + 1,
pid_pat_list[pids[k] & 0x0000FFFF].patlen) != 0) {
/* inside loop */
continue;
}
if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
}
matches++;
} else {
if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
}
matches++;
}
}
}
return matches;
}
void SCACCudaStartDispatcher(void)
{
/* create the threads */
ThreadVars *tv = TmThreadCreate("Cuda_Mpm_AC_Dispatcher",
NULL, NULL,
NULL, NULL,
"custom", SCACCudaDispatcher, 0);
if (tv == NULL) {
SCLogError(SC_ERR_THREAD_CREATE, "Error creating a thread for "
"ac cuda dispatcher. Killing engine.");
exit(EXIT_FAILURE);
}
if (TmThreadSpawn(tv) != 0) {
SCLogError(SC_ERR_THREAD_SPAWN, "Failed to spawn thread for "
"ac cuda dispatcher. Killing engine.");
exit(EXIT_FAILURE);
}
return;
}
int MpmCudaBufferSetup(void)
{
int r = 0;
MpmCudaConf *conf = CudaHandlerGetCudaProfile("mpm");
if (conf == NULL) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error obtaining cuda mpm profile.");
return -1;
}
CUcontext cuda_context = CudaHandlerModuleGetContext(MPM_AC_CUDA_MODULE_NAME, conf->device_id);
if (cuda_context == 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error retrieving cuda context.");
return -1;
}
r = SCCudaCtxPushCurrent(cuda_context);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error pushing cuda context.");
return -1;
}
uint8_t *d_buffer = NULL;
uint32_t *o_buffer = NULL;
void **p_buffer = NULL;
r = SCCudaMemAllocHost((void *)&d_buffer, conf->cb_buffer_size);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Cuda alloc host failure.");
return -1;
}
SCLogInfo("Allocated a cuda d_buffer - %"PRIu32" bytes", conf->cb_buffer_size);
r = SCCudaMemAllocHost((void *)&o_buffer, sizeof(uint32_t) * UTIL_MPM_CUDA_CUDA_BUFFER_OPBUFFER_ITEMS_DEFAULT);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Cuda alloc host failue.");
return -1;
}
r = SCCudaMemAllocHost((void *)&p_buffer, sizeof(void *) * UTIL_MPM_CUDA_CUDA_BUFFER_OPBUFFER_ITEMS_DEFAULT);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Cuda alloc host failure.");
return -1;
}
r = SCCudaCtxPopCurrent(NULL);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "cuda context pop failure.");
return -1;
}
CudaBufferData *cb = CudaBufferRegisterNew(d_buffer, conf->cb_buffer_size, o_buffer, p_buffer, UTIL_MPM_CUDA_CUDA_BUFFER_OPBUFFER_ITEMS_DEFAULT);
if (cb == NULL) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error registering new cb instance.");
return -1;
}
CudaHandlerModuleStoreData(MPM_AC_CUDA_MODULE_NAME, MPM_AC_CUDA_MODULE_CUDA_BUFFER_NAME, cb);
return 0;
}
int MpmCudaBufferDeSetup(void)
{
int r = 0;
MpmCudaConf *conf = CudaHandlerGetCudaProfile("mpm");
if (conf == NULL) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error obtaining cuda mpm profile.");
return -1;
}
CudaBufferData *cb_data = CudaHandlerModuleGetData(MPM_AC_CUDA_MODULE_NAME, MPM_AC_CUDA_MODULE_CUDA_BUFFER_NAME);
BUG_ON(cb_data == NULL);
CUcontext cuda_context = CudaHandlerModuleGetContext(MPM_AC_CUDA_MODULE_NAME, conf->device_id);
if (cuda_context == 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error retrieving cuda context.");
return -1;
}
r = SCCudaCtxPushCurrent(cuda_context);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error pushing cuda context.");
return -1;
}
r = SCCudaMemFreeHost(cb_data->d_buffer);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda host memory.");
return -1;
}
r = SCCudaMemFreeHost(cb_data->o_buffer);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda host memory.");
return -1;
}
r = SCCudaMemFreeHost(cb_data->p_buffer);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "Error freeing cuda host memory.");
return -1;
}
r = SCCudaCtxPopCurrent(NULL);
if (r < 0) {
SCLogError(SC_ERR_AC_CUDA_ERROR, "cuda context pop failure.");
return -1;
}
CudaBufferDeRegister(cb_data);
return 0;
}
#endif /* __SC_CUDA_SUPPORT */
/************************** Mpm Registration ***************************/
/**
* \brief Register the aho-corasick mpm.
*/
void MpmACRegister(void)
{
mpm_table[MPM_AC].name = "ac";
/* don't need this. isn't that awesome? no more chopping and blah blah */
mpm_table[MPM_AC].max_pattern_length = 0;
mpm_table[MPM_AC].InitCtx = SCACInitCtx;
mpm_table[MPM_AC].InitThreadCtx = SCACInitThreadCtx;
mpm_table[MPM_AC].DestroyCtx = SCACDestroyCtx;
mpm_table[MPM_AC].DestroyThreadCtx = SCACDestroyThreadCtx;
mpm_table[MPM_AC].AddPattern = SCACAddPatternCS;
mpm_table[MPM_AC].AddPatternNocase = SCACAddPatternCI;
mpm_table[MPM_AC].Prepare = SCACPreparePatterns;
mpm_table[MPM_AC].Search = SCACSearch;
mpm_table[MPM_AC].Cleanup = NULL;
mpm_table[MPM_AC].PrintCtx = SCACPrintInfo;
mpm_table[MPM_AC].PrintThreadCtx = SCACPrintSearchStats;
mpm_table[MPM_AC].RegisterUnittests = SCACRegisterTests;
return;
}
#ifdef __SC_CUDA_SUPPORT__
/**
* \brief Register the aho-corasick cuda mpm.
*/
void MpmACCudaRegister(void)
{
mpm_table[MPM_AC_CUDA].name = "ac-cuda";
/* don't need this. isn't that awesome? no more chopping and blah blah */
mpm_table[MPM_AC_CUDA].max_pattern_length = 0;
mpm_table[MPM_AC_CUDA].InitCtx = SCACInitCtx;
mpm_table[MPM_AC_CUDA].InitThreadCtx = SCACInitThreadCtx;
mpm_table[MPM_AC_CUDA].DestroyCtx = SCACDestroyCtx;
mpm_table[MPM_AC_CUDA].DestroyThreadCtx = SCACDestroyThreadCtx;
mpm_table[MPM_AC_CUDA].AddPattern = SCACAddPatternCS;
mpm_table[MPM_AC_CUDA].AddPatternNocase = SCACAddPatternCI;
mpm_table[MPM_AC_CUDA].Prepare = SCACPreparePatterns;
mpm_table[MPM_AC_CUDA].Search = SCACSearch;
mpm_table[MPM_AC_CUDA].Cleanup = NULL;
mpm_table[MPM_AC_CUDA].PrintCtx = SCACPrintInfo;
mpm_table[MPM_AC_CUDA].PrintThreadCtx = SCACPrintSearchStats;
mpm_table[MPM_AC_CUDA].RegisterUnittests = SCACRegisterTests;
return;
}
#endif /* __SC_CUDA_SUPPORT__ */
/*************************************Unittests********************************/
#ifdef UNITTESTS
static int SCACTest01(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghjiklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest02(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abce", 4, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghjiklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 0)
result = 1;
else
printf("0 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest03(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"bcde", 4, 0, 0, 1, 0, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"fghj", 4, 0, 0, 2, 0, 0);
PmqSetup(&pmq, 3);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghjiklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 3)
result = 1;
else
printf("3 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest04(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"bcdegh", 6, 0, 0, 1, 0, 0);
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"fghjxyz", 7, 0, 0, 2, 0, 0);
PmqSetup(&pmq, 3);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghjiklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest05(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"ABCD", 4, 0, 0, 0, 0, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"bCdEfG", 6, 0, 0, 1, 0, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"fghJikl", 7, 0, 0, 2, 0, 0);
PmqSetup(&pmq, 3);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghjiklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 3)
result = 1;
else
printf("3 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest06(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcd";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest07(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* should match 30 times */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"A", 1, 0, 0, 0, 0, 0);
/* should match 29 times */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AA", 2, 0, 0, 1, 0, 0);
/* should match 28 times */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AAA", 3, 0, 0, 2, 0, 0);
/* 26 */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AAAAA", 5, 0, 0, 3, 0, 0);
/* 21 */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AAAAAAAAAA", 10, 0, 0, 4, 0, 0);
/* 1 */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
30, 0, 0, 5, 0, 0);
PmqSetup(&pmq, 6);
/* total matches: 135 */
SCACPreparePatterns(&mpm_ctx);
char *buf = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 135)
result = 1;
else
printf("135 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest08(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)"a", 1);
if (cnt == 0)
result = 1;
else
printf("0 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest09(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"ab", 2, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)"ab", 2);
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest10(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcdefgh", 8, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "01234567890123456789012345678901234567890123456789"
"01234567890123456789012345678901234567890123456789"
"abcdefgh"
"01234567890123456789012345678901234567890123456789"
"01234567890123456789012345678901234567890123456789";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest11(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
if (MpmAddPatternCS(&mpm_ctx, (uint8_t *)"he", 2, 0, 0, 1, 0, 0) == -1)
goto end;
if (MpmAddPatternCS(&mpm_ctx, (uint8_t *)"she", 3, 0, 0, 2, 0, 0) == -1)
goto end;
if (MpmAddPatternCS(&mpm_ctx, (uint8_t *)"his", 3, 0, 0, 3, 0, 0) == -1)
goto end;
if (MpmAddPatternCS(&mpm_ctx, (uint8_t *)"hers", 4, 0, 0, 4, 0, 0) == -1)
goto end;
PmqSetup(&pmq, 5);
if (SCACPreparePatterns(&mpm_ctx) == -1)
goto end;
result = 1;
char *buf = "he";
result &= (SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq, (uint8_t *)buf,
strlen(buf)) == 1);
buf = "she";
result &= (SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq, (uint8_t *)buf,
strlen(buf)) == 2);
buf = "his";
result &= (SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq, (uint8_t *)buf,
strlen(buf)) == 1);
buf = "hers";
result &= (SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq, (uint8_t *)buf,
strlen(buf)) == 2);
end:
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest12(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"wxyz", 4, 0, 0, 0, 0, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"vwxyz", 5, 0, 0, 1, 0, 0);
PmqSetup(&pmq, 2);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 2)
result = 1;
else
printf("2 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest13(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcdefghijklmnopqrstuvwxyzABCD";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyzABCD";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest14(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcdefghijklmnopqrstuvwxyzABCDE";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyzABCDE";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest15(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcdefghijklmnopqrstuvwxyzABCDEF";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyzABCDEF";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest16(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcdefghijklmnopqrstuvwxyzABC";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyzABC";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest17(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcdefghijklmnopqrstuvwxyzAB";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyzAB";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest18(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
char *pat = "abcde""fghij""klmno""pqrst""uvwxy""z";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcde""fghij""klmno""pqrst""uvwxy""z";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest19(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 */
char *pat = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest20(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 */
char *pat = "AAAAA""AAAAA""AAAAA""AAAAA""AAAAA""AAAAA""AA";
MpmAddPatternCS(&mpm_ctx, (uint8_t *)pat, strlen(pat), 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "AAAAA""AAAAA""AAAAA""AAAAA""AAAAA""AAAAA""AA";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest21(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AA", 2, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)"AA", 2);
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest22(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcd", 4, 0, 0, 0, 0, 0);
/* 1 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"abcde", 5, 0, 0, 1, 0, 0);
PmqSetup(&pmq, 2);
SCACPreparePatterns(&mpm_ctx);
char *buf = "abcdefghijklmnopqrstuvwxyz";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 2)
result = 1;
else
printf("2 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest23(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"AA", 2, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)"aa", 2);
if (cnt == 0)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest24(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 1 */
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"AA", 2, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)"aa", 2);
if (cnt == 1)
result = 1;
else
printf("1 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest25(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"ABCD", 4, 0, 0, 0, 0, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"bCdEfG", 6, 0, 0, 1, 0, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"fghiJkl", 7, 0, 0, 2, 0, 0);
PmqSetup(&pmq, 3);
SCACPreparePatterns(&mpm_ctx);
char *buf = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 3)
result = 1;
else
printf("3 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest26(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0x00, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
MpmAddPatternCI(&mpm_ctx, (uint8_t *)"Works", 5, 0, 0, 0, 0, 0);
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"Works", 5, 0, 0, 1, 0, 0);
PmqSetup(&pmq, 2);
SCACPreparePatterns(&mpm_ctx);
char *buf = "works";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 1)
result = 1;
else
printf("3 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest27(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 0 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"ONE", 3, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "tone";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 0)
result = 1;
else
printf("0 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest28(void)
{
int result = 0;
MpmCtx mpm_ctx;
MpmThreadCtx mpm_thread_ctx;
PatternMatcherQueue pmq;
memset(&mpm_ctx, 0, sizeof(MpmCtx));
memset(&mpm_thread_ctx, 0, sizeof(MpmThreadCtx));
MpmInitCtx(&mpm_ctx, MPM_AC);
SCACInitThreadCtx(&mpm_ctx, &mpm_thread_ctx, 0);
/* 0 match */
MpmAddPatternCS(&mpm_ctx, (uint8_t *)"one", 3, 0, 0, 0, 0, 0);
PmqSetup(&pmq, 1);
SCACPreparePatterns(&mpm_ctx);
char *buf = "tONE";
uint32_t cnt = SCACSearch(&mpm_ctx, &mpm_thread_ctx, &pmq,
(uint8_t *)buf, strlen(buf));
if (cnt == 0)
result = 1;
else
printf("0 != %" PRIu32 " ",cnt);
SCACDestroyCtx(&mpm_ctx);
SCACDestroyThreadCtx(&mpm_ctx, &mpm_thread_ctx);
PmqFree(&pmq);
return result;
}
static int SCACTest29(void)
{
uint8_t *buf = (uint8_t *)"onetwothreefourfivesixseveneightnine";
uint16_t buflen = strlen((char *)buf);
Packet *p = NULL;
ThreadVars th_v;
DetectEngineThreadCtx *det_ctx = NULL;
int result = 0;
memset(&th_v, 0, sizeof(th_v));
p = UTHBuildPacket(buf, buflen, IPPROTO_TCP);
DetectEngineCtx *de_ctx = DetectEngineCtxInit();
if (de_ctx == NULL)
goto end;
de_ctx->flags |= DE_QUIET;
de_ctx->sig_list = SigInit(de_ctx, "alert tcp any any -> any any "
"(content:\"onetwothreefourfivesixseveneightnine\"; sid:1;)");
if (de_ctx->sig_list == NULL)
goto end;
de_ctx->sig_list->next = SigInit(de_ctx, "alert tcp any any -> any any "
"(content:\"onetwothreefourfivesixseveneightnine\"; fast_pattern:3,3; sid:2;)");
if (de_ctx->sig_list->next == NULL)
goto end;
SigGroupBuild(de_ctx);
DetectEngineThreadCtxInit(&th_v, (void *)de_ctx, (void *)&det_ctx);
SigMatchSignatures(&th_v, de_ctx, det_ctx, p);
if (PacketAlertCheck(p, 1) != 1) {
printf("if (PacketAlertCheck(p, 1) != 1) failure\n");
goto end;
}
if (PacketAlertCheck(p, 2) != 1) {
printf("if (PacketAlertCheck(p, 1) != 2) failure\n");
goto end;
}
result = 1;
end:
if (de_ctx != NULL) {
SigGroupCleanup(de_ctx);
SigCleanSignatures(de_ctx);
DetectEngineThreadCtxDeinit(&th_v, (void *)det_ctx);
DetectEngineCtxFree(de_ctx);
}
UTHFreePackets(&p, 1);
return result;
}
#endif /* UNITTESTS */
void SCACRegisterTests(void)
{
#ifdef UNITTESTS
UtRegisterTest("SCACTest01", SCACTest01, 1);
UtRegisterTest("SCACTest02", SCACTest02, 1);
UtRegisterTest("SCACTest03", SCACTest03, 1);
UtRegisterTest("SCACTest04", SCACTest04, 1);
UtRegisterTest("SCACTest05", SCACTest05, 1);
UtRegisterTest("SCACTest06", SCACTest06, 1);
UtRegisterTest("SCACTest07", SCACTest07, 1);
UtRegisterTest("SCACTest08", SCACTest08, 1);
UtRegisterTest("SCACTest09", SCACTest09, 1);
UtRegisterTest("SCACTest10", SCACTest10, 1);
UtRegisterTest("SCACTest11", SCACTest11, 1);
UtRegisterTest("SCACTest12", SCACTest12, 1);
UtRegisterTest("SCACTest13", SCACTest13, 1);
UtRegisterTest("SCACTest14", SCACTest14, 1);
UtRegisterTest("SCACTest15", SCACTest15, 1);
UtRegisterTest("SCACTest16", SCACTest16, 1);
UtRegisterTest("SCACTest17", SCACTest17, 1);
UtRegisterTest("SCACTest18", SCACTest18, 1);
UtRegisterTest("SCACTest19", SCACTest19, 1);
UtRegisterTest("SCACTest20", SCACTest20, 1);
UtRegisterTest("SCACTest21", SCACTest21, 1);
UtRegisterTest("SCACTest22", SCACTest22, 1);
UtRegisterTest("SCACTest23", SCACTest23, 1);
UtRegisterTest("SCACTest24", SCACTest24, 1);
UtRegisterTest("SCACTest25", SCACTest25, 1);
UtRegisterTest("SCACTest26", SCACTest26, 1);
UtRegisterTest("SCACTest27", SCACTest27, 1);
UtRegisterTest("SCACTest28", SCACTest28, 1);
UtRegisterTest("SCACTest29", SCACTest29, 1);
#endif
return;
}