You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/detect-engine-threshold.c

663 lines
20 KiB
C

/* Copyright (C) 2007-2012 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup threshold Thresholding
*
* This feature is used to reduce the number of logged alerts for noisy rules.
* This can be tuned to significantly reduce false alarms, and it can also be
* used to write a newer breed of rules. Thresholding commands limit the number
* of times a particular event is logged during a specified time interval.
*
* @{
*/
/**
* \file
*
* \author Breno Silva <breno.silva@gmail.com>
* \author Victor Julien <victor@inliniac.net>
*
* Threshold part of the detection engine.
*/
#include "suricata-common.h"
#include "debug.h"
#include "detect.h"
#include "flow.h"
#include "host.h"
#include "detect-parse.h"
#include "detect-engine-sigorder.h"
#include "detect-engine-siggroup.h"
#include "detect-engine-address.h"
#include "detect-engine-port.h"
#include "detect-engine-mpm.h"
#include "detect-engine-iponly.h"
#include "detect-engine.h"
#include "detect-engine-threshold.h"
#include "detect-content.h"
#include "detect-uricontent.h"
#include "util-hash.h"
#include "util-time.h"
#include "util-error.h"
#include "util-debug.h"
#include "util-var-name.h"
#include "tm-threads.h"
/**
* \brief Return next DetectThresholdData for signature
*
* \param sig Signature pointer
* \param p Packet structure
* \param sm Pointer to a Signature Match pointer
*
* \retval tsh Return the threshold data from signature or NULL if not found
*
*
*/
DetectThresholdData *SigGetThresholdTypeIter(Signature *sig, Packet *p, SigMatch **psm)
{
SigMatch *sm = NULL;
DetectThresholdData *tsh = NULL;
if (sig == NULL)
return NULL;
if (*psm == NULL) {
sm = sig->sm_lists_tail[DETECT_SM_LIST_THRESHOLD];
} else {
/* Iteration in progress, using provided value */
sm = *psm;
}
if (p == NULL)
return NULL;
while (sm != NULL) {
if (sm->type == DETECT_THRESHOLD || sm->type == DETECT_DETECTION_FILTER) {
tsh = (DetectThresholdData *)sm->ctx;
*psm = sm->prev;
return tsh;
}
sm = sm->prev;
}
*psm = NULL;
return NULL;
}
/**
* \brief Check if a certain signature has threshold option
*
* \param sig Signature pointer
* \param p Packet structure
*
* \retval tsh Return the threshold data from signature or NULL if not found
*/
DetectThresholdData *SigGetThresholdType(Signature *sig, Packet *p)
{
SigMatch *psm = NULL;
return SigGetThresholdTypeIter(sig, p, &psm);
}
/**
* \brief Remove timeout threshold hash elements
*
* \param de_ctx Dectection Context
*
*/
int ThresholdTimeoutCheck(Host *host, struct timeval *tv)
{
DetectThresholdEntry *tde = NULL;
DetectThresholdEntry *tmp = NULL;
DetectThresholdEntry *prev = NULL;
int retval = 1;
if (host->threshold == NULL)
return 1;
tmp = host->threshold;
prev = NULL;
while (tmp != NULL) {
if ((tv->tv_sec - tmp->tv_sec1) <= tmp->seconds) {
prev = tmp;
tmp = tmp->next;
retval = 0;
continue;
}
/* timed out */
if (prev != NULL) {
prev->next = tmp->next;
tde = tmp;
tmp = tde->next;
SCFree(tde);
} else {
host->threshold = tmp->next;
tde = tmp;
tmp = tde->next;
SCFree(tde);
}
}
return retval;
}
static inline DetectThresholdEntry *DetectThresholdEntryAlloc(DetectThresholdData *td, Packet *p, uint32_t sid, uint32_t gid) {
SCEnter();
DetectThresholdEntry *ste = SCMalloc(sizeof(DetectThresholdEntry));
if (unlikely(ste == NULL)) {
SCReturnPtr(NULL, "DetectThresholdEntry");
}
ste->sid = sid;
ste->gid = gid;
ste->track = td->track;
ste->seconds = td->seconds;
ste->tv_timeout = 0;
SCReturnPtr(ste, "DetectThresholdEntry");
}
static DetectThresholdEntry *ThresholdHostLookupEntry(Host *h, uint32_t sid, uint32_t gid)
{
DetectThresholdEntry *e;
for (e = h->threshold; e != NULL; e = e->next) {
if (e->sid == sid && e->gid == gid)
break;
}
return e;
}
/**
* \retval 2 silent match (no alert but apply actions)
* \retval 1 normal match
* \retval 0 no match
*/
int ThresholdHandlePacketHost(Host *h, Packet *p, DetectThresholdData *td, uint32_t sid, uint32_t gid) {
int ret = 0;
DetectThresholdEntry *lookup_tsh = ThresholdHostLookupEntry(h, sid, gid);
SCLogDebug("lookup_tsh %p sid %u gid %u", lookup_tsh, sid, gid);
switch(td->type) {
case TYPE_LIMIT:
{
SCLogDebug("limit");
if (lookup_tsh != NULL) {
if ((p->ts.tv_sec - lookup_tsh->tv_sec1) < td->seconds) {
lookup_tsh->current_count++;
if (lookup_tsh->current_count <= td->count) {
ret = 1;
} else {
ret = 2;
}
} else {
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->current_count = 1;
ret = 1;
}
} else {
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, sid, gid);
if (e == NULL) {
break;
}
e->tv_sec1 = p->ts.tv_sec;
e->current_count = 1;
ret = 1;
e->next = h->threshold;
h->threshold = e;
}
break;
}
case TYPE_THRESHOLD:
{
SCLogDebug("threshold");
if (lookup_tsh != NULL) {
if ((p->ts.tv_sec - lookup_tsh->tv_sec1) < td->seconds) {
lookup_tsh->current_count++;
if (lookup_tsh->current_count >= td->count) {
ret = 1;
lookup_tsh->current_count = 0;
}
} else {
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->current_count = 1;
}
} else {
if (td->count == 1) {
ret = 1;
} else {
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, sid, gid);
if (e == NULL) {
break;
}
e->current_count = 1;
e->tv_sec1 = p->ts.tv_sec;
e->next = h->threshold;
h->threshold = e;
}
}
break;
}
case TYPE_BOTH:
{
SCLogDebug("both");
if (lookup_tsh != NULL) {
if ((p->ts.tv_sec - lookup_tsh->tv_sec1) < td->seconds) {
/* within time limit */
lookup_tsh->current_count++;
if (lookup_tsh->current_count == td->count) {
ret = 1;
} else if (lookup_tsh->current_count > td->count) {
/* silent match */
ret = 2;
}
} else {
/* expired, so reset */
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->current_count = 1;
/* if we have a limit of 1, this is a match */
if (lookup_tsh->current_count == td->count) {
ret = 1;
}
}
} else {
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, sid, gid);
if (e == NULL) {
break;
}
e->current_count = 1;
e->tv_sec1 = p->ts.tv_sec;
e->next = h->threshold;
h->threshold = e;
/* for the first match we return 1 to
* indicate we should alert */
if (td->count == 1) {
ret = 1;
}
}
break;
}
/* detection_filter */
case TYPE_DETECTION:
{
SCLogDebug("detection_filter");
if (lookup_tsh != NULL) {
long double time_diff = ((p->ts.tv_sec + p->ts.tv_usec/1000000.0) -
(lookup_tsh->tv_sec1 + lookup_tsh->tv_usec1/1000000.0));
if (time_diff < td->seconds) {
/* within timeout */
lookup_tsh->current_count++;
if (lookup_tsh->current_count > td->count) {
ret = 1;
}
} else {
/* expired, reset */
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->tv_usec1 = p->ts.tv_usec;
lookup_tsh->current_count = 1;
}
} else {
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, sid, gid);
if (e == NULL) {
break;
}
e->current_count = 1;
e->tv_sec1 = p->ts.tv_sec;
e->tv_usec1 = p->ts.tv_usec;
e->next = h->threshold;
h->threshold = e;
}
break;
}
/* rate_filter */
case TYPE_RATE:
{
SCLogDebug("rate_filter");
ret = 1;
if (lookup_tsh != NULL) {
/* Check if we have a timeout enabled, if so,
* we still matching (and enabling the new_action) */
if (lookup_tsh->tv_timeout != 0) {
if ((p->ts.tv_sec - lookup_tsh->tv_timeout) > td->timeout) {
/* Ok, we are done, timeout reached */
lookup_tsh->tv_timeout = 0;
} else {
/* Already matching */
/* Take the action to perform */
switch (td->new_action) {
case TH_ACTION_ALERT:
PACKET_ALERT(p);
break;
case TH_ACTION_DROP:
PACKET_DROP(p);
break;
case TH_ACTION_REJECT:
PACKET_REJECT(p);
break;
case TH_ACTION_PASS:
PACKET_PASS(p);
break;
default:
/* Weird, leave the default action */
break;
}
ret = 1;
} /* else - if ((p->ts.tv_sec - lookup_tsh->tv_timeout) > td->timeout) */
} else {
/* Update the matching state with the timeout interval */
if ( (p->ts.tv_sec - lookup_tsh->tv_sec1) < td->seconds) {
lookup_tsh->current_count++;
if (lookup_tsh->current_count > td->count) {
/* Then we must enable the new action by setting a
* timeout */
lookup_tsh->tv_timeout = p->ts.tv_sec;
/* Take the action to perform */
switch (td->new_action) {
case TH_ACTION_ALERT:
PACKET_ALERT(p);
break;
case TH_ACTION_DROP:
PACKET_DROP(p);
break;
case TH_ACTION_REJECT:
PACKET_REJECT(p);
break;
case TH_ACTION_PASS:
PACKET_PASS(p);
break;
default:
/* Weird, leave the default action */
break;
}
ret = 1;
}
} else {
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->current_count = 1;
}
} /* else - if (lookup_tsh->tv_timeout != 0) */
} else {
if (td->count == 1) {
ret = 1;
}
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, sid, gid);
if (e == NULL) {
break;
}
e->current_count = 1;
e->tv_sec1 = p->ts.tv_sec;
e->tv_timeout = 0;
e->next = h->threshold;
h->threshold = e;
}
break;
}
case TYPE_SUPPRESS:
{
int res = 0;
switch (td->track) {
case TRACK_DST:
res = DetectAddressMatch(td->addr, &p->dst);
break;
case TRACK_SRC:
res = DetectAddressMatch(td->addr, &p->src);
break;
case TRACK_RULE:
default:
SCLogError(SC_ERR_INVALID_VALUE,
"track mode %d is not supported", td->track);
break;
}
if (res == 0)
ret = 1;
else
ret = 2; /* suppressed but still need actions */
break;
}
default:
SCLogError(SC_ERR_INVALID_VALUE, "type %d is not supported", td->type);
}
return ret;
}
static int ThresholdHandlePacketRule(DetectEngineCtx *de_ctx, Packet *p, DetectThresholdData *td, Signature *s) {
int ret = 0;
if (td->type != TYPE_RATE)
return 1;
DetectThresholdEntry* lookup_tsh = (DetectThresholdEntry *)de_ctx->ths_ctx.th_entry[s->num];
if (lookup_tsh != NULL) {
/* Check if we have a timeout enabled, if so,
* we still matching (and enabling the new_action) */
if ( (p->ts.tv_sec - lookup_tsh->tv_timeout) > td->timeout) {
/* Ok, we are done, timeout reached */
td->timeout = 0;
} else {
/* Already matching */
/* Take the action to perform */
switch (td->new_action) {
case TH_ACTION_ALERT:
PACKET_ALERT(p);
break;
case TH_ACTION_DROP:
PACKET_DROP(p);
break;
case TH_ACTION_REJECT:
PACKET_REJECT(p);
break;
case TH_ACTION_PASS:
PACKET_PASS(p);
break;
default:
/* Weird, leave the default action */
break;
}
ret = 1;
}
/* Update the matching state with the timeout interval */
if ( (p->ts.tv_sec - lookup_tsh->tv_sec1) < td->seconds) {
lookup_tsh->current_count++;
if (lookup_tsh->current_count >= td->count) {
/* Then we must enable the new action by setting a
* timeout */
lookup_tsh->tv_timeout = p->ts.tv_sec;
/* Take the action to perform */
switch (td->new_action) {
case TH_ACTION_ALERT:
PACKET_ALERT(p);
break;
case TH_ACTION_DROP:
PACKET_DROP(p);
break;
case TH_ACTION_REJECT:
PACKET_REJECT(p);
break;
case TH_ACTION_PASS:
PACKET_PASS(p);
break;
default:
/* Weird, leave the default action */
break;
}
ret = 1;
}
} else {
lookup_tsh->tv_sec1 = p->ts.tv_sec;
lookup_tsh->current_count = 1;
}
} else {
if (td->count == 1) {
ret = 1;
}
DetectThresholdEntry *e = DetectThresholdEntryAlloc(td, p, s->id, s->gid);
if (e != NULL) {
e->current_count = 1;
e->tv_sec1 = p->ts.tv_sec;
e->tv_timeout = 0;
de_ctx->ths_ctx.th_entry[s->num] = e;
}
}
return ret;
}
/**
* \brief Make the threshold logic for signatures
*
* \param de_ctx Dectection Context
* \param tsh_ptr Threshold element
* \param p Packet structure
* \param s Signature structure
*
* \retval 2 silent match (no alert but apply actions)
* \retval 1 alert on this event
* \retval 0 do not alert on this event
*/
int PacketAlertThreshold(DetectEngineCtx *de_ctx, DetectEngineThreadCtx *det_ctx,
DetectThresholdData *td, Packet *p, Signature *s)
{
SCEnter();
int ret = 0;
if (td == NULL) {
SCReturnInt(0);
}
if (td->track == TRACK_SRC) {
Host *src = HostGetHostFromHash(&p->src);
if (src) {
ret = ThresholdHandlePacketHost(src,p,td,s->id,s->gid);
HostRelease(src);
}
} else if (td->track == TRACK_DST) {
Host *dst = HostGetHostFromHash(&p->dst);
if (dst) {
ret = ThresholdHandlePacketHost(dst,p,td,s->id,s->gid);
HostRelease(dst);
}
} else if (td->track == TRACK_RULE) {
SCMutexLock(&de_ctx->ths_ctx.threshold_table_lock);
ret = ThresholdHandlePacketRule(de_ctx,p,td,s);
SCMutexUnlock(&de_ctx->ths_ctx.threshold_table_lock);
}
SCReturnInt(ret);
}
/**
* \brief Init threshold context hash tables
*
* \param de_ctx Dectection Context
*
*/
void ThresholdHashInit(DetectEngineCtx *de_ctx)
{
if (SCMutexInit(&de_ctx->ths_ctx.threshold_table_lock, NULL) != 0) {
SCLogError(SC_ERR_MEM_ALLOC,
"Threshold: Failed to initialize hash table mutex.");
exit(EXIT_FAILURE);
}
}
/**
* \brief Destroy threshold context hash tables
*
* \param de_ctx Dectection Context
*
*/
void ThresholdContextDestroy(DetectEngineCtx *de_ctx)
{
if (de_ctx->ths_ctx.th_entry != NULL)
SCFree(de_ctx->ths_ctx.th_entry);
SCMutexDestroy(&de_ctx->ths_ctx.threshold_table_lock);
}
/**
* \brief this function will free all the entries of a list
* DetectTagDataEntry
*
* \param td pointer to DetectTagDataEntryList
*/
void ThresholdListFree(void *ptr) {
if (ptr != NULL) {
DetectThresholdEntry *entry = ptr;
while (entry != NULL) {
DetectThresholdEntry *next_entry = entry->next;
SCFree(entry);
entry = next_entry;
}
}
}
/**
* @}
*/