/* Copyright (C) 2017 Open Information Security Foundation * * You can copy, redistribute or modify this Program under the terms of * the GNU General Public License version 2 as published by the Free * Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * version 2 along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ // written by Victor Julien // TCP buffering code written by Pierre Chifflier extern crate libc; use std; use std::mem::transmute; use std::collections::{HashMap}; use std::ffi::CStr; use nom; use log::*; use applayer; use applayer::LoggerFlags; use core::*; use filetracker::*; use filecontainer::*; use nfs::types::*; use nfs::rpc_records::*; use nfs::nfs_records::*; use nfs::nfs2_records::*; use nfs::nfs3_records::*; pub static mut SURICATA_NFS_FILE_CONFIG: Option<&'static SuricataFileContext> = None; /* * Record parsing. * * Incomplete records come in due to TCP splicing. For all record types * except READ and WRITE, processing only begins when the full record * is available. For READ/WRITE partial records are processed as well to * avoid queuing too much data. * * Getting file names. * * NFS makes heavy use of 'file handles' for operations. In many cases it * uses a file name just once and after that just the handle. For example, * if a client did a file listing (e.g. READDIRPLUS) and would READ the * file afterwards, the name will only appear in the READDIRPLUS answer. * To be able to log the names we store a mapping between file handles * and file names in NFSState::namemap. * * Mapping NFS to Suricata's transaction model. * * The easiest way to do transactions would be to map each command/reply with * the same XID to a transaction. This would allow for per XID logging, detect * etc. However this model doesn't fit well with file tracking. The file * tracking in Suricata is really expecting to be one or more files to live * inside a single transaction. Would XID pairs be a transaction however, * there would be many transactions forming a single file. This will be very * inefficient. * * The model implemented here is as follows: each file transfer is a single * transaction. All XID pairs unrelated to those file transfers create * transactions per pair. * * A complicating factor is that the procedure matching is per tx, and a * file transfer may have multiple procedures involved. Currently now only * a COMMIT after WRITEs. A vector of additional procedures is kept to * match on this. * * File tracking * * Files are tracked per 'FileTransferTracker' and are stored in the * NFSTransaction where they can be looked up per handle as part of the * Transaction lookup. */ #[repr(u32)] pub enum NFSEvent { MalformedData = 0, NonExistingVersion = 1, UnsupportedVersion = 2, } #[derive(Debug)] pub enum NFSTransactionTypeData { RENAME(Vec), FILE(NFSTransactionFile), } #[derive(Debug)] pub struct NFSTransactionFile { /// additional procedures part of a single file transfer. Currently /// only COMMIT on WRITEs. pub file_additional_procs: Vec, pub chunk_count: u32, /// last xid of this file transfer. Last READ or COMMIT normally. pub file_last_xid: u32, /// file tracker for a single file. Boxed so that we don't use /// as much space if we're not a file tx. pub file_tracker: FileTransferTracker, } impl NFSTransactionFile { pub fn new() -> NFSTransactionFile { return NFSTransactionFile { file_additional_procs: Vec::new(), chunk_count:0, file_last_xid: 0, file_tracker: FileTransferTracker::new(), } } } #[derive(Debug)] pub struct NFSTransaction { pub id: u64, /// internal id pub xid: u32, /// nfs req/reply pair id pub procedure: u32, /// file name of the object we're dealing with. In case of RENAME /// this is the 'from' or original name. pub file_name: Vec, pub auth_type: u32, pub request_machine_name: Vec, pub request_uid: u32, pub request_gid: u32, pub rpc_response_status: u32, pub nfs_response_status: u32, pub is_first: bool, pub is_last: bool, /// for state tracking. false means this side is in progress, true /// that it's complete. pub request_done: bool, pub response_done: bool, pub nfs_version: u16, /// is a special file tx that we look up by file_handle instead of XID pub is_file_tx: bool, /// file transactions are unidirectional in the sense that they track /// a single file on one direction pub file_tx_direction: u8, // STREAM_TOCLIENT or STREAM_TOSERVER pub file_handle: Vec, /// Procedure type specific data /// TODO see if this can be an Option>. Initial /// attempt failed. pub type_data: Option, detect_flags_ts: u64, detect_flags_tc: u64, pub logged: LoggerFlags, pub de_state: Option<*mut DetectEngineState>, pub events: *mut AppLayerDecoderEvents, } impl NFSTransaction { pub fn new() -> NFSTransaction { return NFSTransaction{ id: 0, xid: 0, procedure: 0, file_name:Vec::new(), request_machine_name:Vec::new(), request_uid:0, request_gid:0, rpc_response_status:0, nfs_response_status:0, auth_type: 0, is_first: false, is_last: false, request_done: false, response_done: false, nfs_version:0, is_file_tx: false, file_tx_direction: 0, file_handle:Vec::new(), type_data: None, detect_flags_ts: 0, detect_flags_tc: 0, logged: LoggerFlags::new(), de_state: None, events: std::ptr::null_mut(), } } pub fn free(&mut self) { if self.events != std::ptr::null_mut() { sc_app_layer_decoder_events_free_events(&mut self.events); } match self.de_state { Some(state) => { sc_detect_engine_state_free(state); } _ => {} } } } impl Drop for NFSTransaction { fn drop(&mut self) { self.free(); } } #[derive(Debug)] pub struct NFSRequestXidMap { pub progver: u32, pub procedure: u32, pub chunk_offset: u64, pub file_name:Vec, /// READ replies can use this to get to the handle the request used pub file_handle:Vec, pub gssapi_proc: u32, pub gssapi_service: u32, } impl NFSRequestXidMap { pub fn new(progver: u32, procedure: u32, chunk_offset: u64) -> NFSRequestXidMap { NFSRequestXidMap { progver:progver, procedure:procedure, chunk_offset:chunk_offset, file_name:Vec::new(), file_handle:Vec::new(), gssapi_proc: 0, gssapi_service: 0, } } } #[derive(Debug)] pub struct NFSFiles { pub files_ts: FileContainer, pub files_tc: FileContainer, pub flags_ts: u16, pub flags_tc: u16, } impl NFSFiles { pub fn new() -> NFSFiles { NFSFiles { files_ts:FileContainer::default(), files_tc:FileContainer::default(), flags_ts:0, flags_tc:0, } } pub fn free(&mut self) { self.files_ts.free(); self.files_tc.free(); } pub fn get(&mut self, direction: u8) -> (&mut FileContainer, u16) { if direction == STREAM_TOSERVER { (&mut self.files_ts, self.flags_ts) } else { (&mut self.files_tc, self.flags_tc) } } } /// little wrapper around the FileTransferTracker::new_chunk method pub fn filetracker_newchunk(ft: &mut FileTransferTracker, files: &mut FileContainer, flags: u16, name: &Vec, data: &[u8], chunk_offset: u64, chunk_size: u32, fill_bytes: u8, is_last: bool, xid: &u32) { match unsafe {SURICATA_NFS_FILE_CONFIG} { Some(sfcm) => { ft.new_chunk(sfcm, files, flags, &name, data, chunk_offset, chunk_size, fill_bytes, is_last, xid); } None => panic!("BUG"), } } #[derive(Debug)] pub struct NFSState { /// map xid to procedure so replies can lookup the procedure pub requestmap: HashMap, /// map file handle (1) to name (2) pub namemap: HashMap, Vec>, /// transactions list pub transactions: Vec, /// TCP segments defragmentation buffer pub tcp_buffer_ts: Vec, pub tcp_buffer_tc: Vec, pub files: NFSFiles, /// partial record tracking pub ts_chunk_xid: u32, pub tc_chunk_xid: u32, /// size of the current chunk that we still need to receive pub ts_chunk_left: u32, pub tc_chunk_left: u32, /// file handle of in progress toserver WRITE file chunk ts_chunk_fh: Vec, ts_ssn_gap: bool, tc_ssn_gap: bool, ts_gap: bool, // last TS update was gap tc_gap: bool, // last TC update was gap is_udp: bool, pub nfs_version: u16, pub events: u16, /// tx counter for assigning incrementing id's to tx's tx_id: u64, } impl NFSState { /// Allocation function for a new TLS parser instance pub fn new() -> NFSState { NFSState { requestmap:HashMap::new(), namemap:HashMap::new(), transactions: Vec::new(), tcp_buffer_ts:Vec::with_capacity(8192), tcp_buffer_tc:Vec::with_capacity(8192), files:NFSFiles::new(), ts_chunk_xid:0, tc_chunk_xid:0, ts_chunk_left:0, tc_chunk_left:0, ts_chunk_fh:Vec::new(), ts_ssn_gap:false, tc_ssn_gap:false, ts_gap:false, tc_gap:false, is_udp:false, nfs_version:0, events:0, tx_id:0, } } pub fn free(&mut self) { self.files.free(); } pub fn new_tx(&mut self) -> NFSTransaction { let mut tx = NFSTransaction::new(); self.tx_id += 1; tx.id = self.tx_id; return tx; } pub fn free_tx(&mut self, tx_id: u64) { //SCLogNotice!("Freeing TX with ID {}", tx_id); let len = self.transactions.len(); let mut found = false; let mut index = 0; for i in 0..len { let tx = &self.transactions[i]; if tx.id == tx_id + 1 { found = true; index = i; break; } } if found { SCLogDebug!("freeing TX with ID {} at index {}", tx_id, index); self.transactions.remove(index); } } pub fn get_tx_by_id(&mut self, tx_id: u64) -> Option<&NFSTransaction> { SCLogDebug!("get_tx_by_id: tx_id={}", tx_id); for tx in &mut self.transactions { if tx.id == tx_id + 1 { SCLogDebug!("Found NFS TX with ID {}", tx_id); return Some(tx); } } SCLogDebug!("Failed to find NFS TX with ID {}", tx_id); return None; } pub fn get_tx_by_xid(&mut self, tx_xid: u32) -> Option<&mut NFSTransaction> { SCLogDebug!("get_tx_by_xid: tx_xid={}", tx_xid); for tx in &mut self.transactions { if !tx.is_file_tx && tx.xid == tx_xid { SCLogDebug!("Found NFS TX with ID {} XID {:04X}", tx.id, tx.xid); return Some(tx); } } SCLogDebug!("Failed to find NFS TX with XID {:04X}", tx_xid); return None; } // for use with the C API call StateGetTxIterator pub fn get_tx_iterator(&mut self, min_tx_id: u64, state: &mut u64) -> Option<(&NFSTransaction, u64, bool)> { let mut index = *state as usize; let len = self.transactions.len(); // find tx that is >= min_tx_id while index < len { let tx = &self.transactions[index]; if tx.id < min_tx_id + 1 { index += 1; continue; } // store current index in the state and not the next // as transactions might be freed between now and the // next time we are called. *state = index as u64; SCLogDebug!("returning tx_id {} has_next? {} (len {} index {}), tx {:?}", tx.id - 1, (len - index) > 1, len, index, tx); return Some((tx, tx.id - 1, (len - index) > 1)); } return None; } /// Set an event. The event is set on the most recent transaction. pub fn set_event(&mut self, event: NFSEvent) { let len = self.transactions.len(); if len == 0 { return; } let tx = &mut self.transactions[len - 1]; sc_app_layer_decoder_events_set_event_raw(&mut tx.events, event as u8); self.events += 1; } // TODO maybe not enough users to justify a func pub fn mark_response_tx_done(&mut self, xid: u32, rpc_status: u32, nfs_status: u32, resp_handle: &Vec) { match self.get_tx_by_xid(xid) { Some(mytx) => { mytx.response_done = true; mytx.rpc_response_status = rpc_status; mytx.nfs_response_status = nfs_status; if mytx.file_handle.len() == 0 && resp_handle.len() > 0 { mytx.file_handle = resp_handle.to_vec(); } SCLogDebug!("process_reply_record: tx ID {} XID {:04X} REQUEST {} RESPONSE {}", mytx.id, mytx.xid, mytx.request_done, mytx.response_done); }, None => { //SCLogNotice!("process_reply_record: not TX found for XID {}", r.hdr.xid); }, } } pub fn process_request_record_lookup<'b>(&mut self, r: &RpcPacket<'b>, xidmap: &mut NFSRequestXidMap) { match parse_nfs3_request_lookup(r.prog_data) { Ok((_, lookup)) => { SCLogDebug!("LOOKUP {:?}", lookup); xidmap.file_name = lookup.name_vec; }, _ => { self.set_event(NFSEvent::MalformedData); }, }; } pub fn xidmap_handle2name(&mut self, xidmap: &mut NFSRequestXidMap) { match self.namemap.get(&xidmap.file_handle) { Some(n) => { SCLogDebug!("xidmap_handle2name: name {:?}", n); xidmap.file_name = n.to_vec(); }, _ => { SCLogDebug!("xidmap_handle2name: object {:?} not found", xidmap.file_handle); }, } } /// complete request record fn process_request_record<'b>(&mut self, r: &RpcPacket<'b>) -> u32 { SCLogDebug!("REQUEST {} procedure {} ({}) blob size {}", r.hdr.xid, r.procedure, self.requestmap.len(), r.prog_data.len()); match r.progver { 4 => { self.process_request_record_v4(r) }, 3 => { self.process_request_record_v3(r) }, 2 => { self.process_request_record_v2(r) }, _ => { 1 }, } } pub fn new_file_tx(&mut self, file_handle: &Vec, file_name: &Vec, direction: u8) -> (&mut NFSTransaction, &mut FileContainer, u16) { let mut tx = self.new_tx(); tx.file_name = file_name.to_vec(); tx.file_handle = file_handle.to_vec(); tx.is_file_tx = true; tx.file_tx_direction = direction; tx.type_data = Some(NFSTransactionTypeData::FILE(NFSTransactionFile::new())); if let Some(NFSTransactionTypeData::FILE(ref mut d)) = tx.type_data { d.file_tracker.tx_id = tx.id - 1; } SCLogDebug!("new_file_tx: TX FILE created: ID {} NAME {}", tx.id, String::from_utf8_lossy(file_name)); self.transactions.push(tx); let tx_ref = self.transactions.last_mut(); let (files, flags) = self.files.get(direction); return (tx_ref.unwrap(), files, flags) } pub fn get_file_tx_by_handle(&mut self, file_handle: &Vec, direction: u8) -> Option<(&mut NFSTransaction, &mut FileContainer, u16)> { let fh = file_handle.to_vec(); for tx in &mut self.transactions { if tx.is_file_tx && direction == tx.file_tx_direction && tx.file_handle == fh { SCLogDebug!("Found NFS file TX with ID {} XID {:04X}", tx.id, tx.xid); let (files, flags) = self.files.get(direction); return Some((tx, files, flags)); } } SCLogDebug!("Failed to find NFS TX with handle {:?}", file_handle); return None; } pub fn process_write_record<'b>(&mut self, r: &RpcPacket<'b>, w: &Nfs3RequestWrite<'b>) -> u32 { // for now assume that stable FILE_SYNC flags means a single chunk let is_last = if w.stable == 2 { true } else { false }; let mut fill_bytes = 0; let pad = w.file_len % 4; if pad != 0 { fill_bytes = 4 - pad; } let file_handle = w.handle.value.to_vec(); let file_name = match self.namemap.get(w.handle.value) { Some(n) => { SCLogDebug!("WRITE name {:?}", n); n.to_vec() }, None => { SCLogDebug!("WRITE object {:?} not found", w.handle.value); Vec::new() }, }; let found = match self.get_file_tx_by_handle(&file_handle, STREAM_TOSERVER) { Some((tx, files, flags)) => { if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { filetracker_newchunk(&mut tdf.file_tracker, files, flags, &file_name, w.file_data, w.offset, w.file_len, fill_bytes as u8, is_last, &r.hdr.xid); tdf.chunk_count += 1; if is_last { tdf.file_last_xid = r.hdr.xid; tx.is_last = true; tx.response_done = true; } true } else { false } }, None => { false }, }; if !found { let (tx, files, flags) = self.new_file_tx(&file_handle, &file_name, STREAM_TOSERVER); if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { filetracker_newchunk(&mut tdf.file_tracker, files, flags, &file_name, w.file_data, w.offset, w.file_len, fill_bytes as u8, is_last, &r.hdr.xid); tx.procedure = NFSPROC3_WRITE; tx.xid = r.hdr.xid; tx.is_first = true; tx.nfs_version = r.progver as u16; if is_last { tdf.file_last_xid = r.hdr.xid; tx.is_last = true; tx.request_done = true; } } } if !self.is_udp { self.ts_chunk_xid = r.hdr.xid; let file_data_len = w.file_data.len() as u32 - fill_bytes as u32; self.ts_chunk_left = w.file_len as u32 - file_data_len as u32; self.ts_chunk_fh = file_handle; SCLogDebug!("REQUEST chunk_xid {:04X} chunk_left {}", self.ts_chunk_xid, self.ts_chunk_left); } 0 } fn process_partial_write_request_record<'b>(&mut self, r: &RpcPacket<'b>, w: &Nfs3RequestWrite<'b>) -> u32 { SCLogDebug!("REQUEST {} procedure {} blob size {}", r.hdr.xid, r.procedure, r.prog_data.len()); let mut xidmap = NFSRequestXidMap::new(r.progver, r.procedure, 0); xidmap.file_handle = w.handle.value.to_vec(); self.requestmap.insert(r.hdr.xid, xidmap); return self.process_write_record(r, w); } fn process_reply_record<'b>(&mut self, r: &RpcReplyPacket<'b>) -> u32 { let mut xidmap; match self.requestmap.remove(&r.hdr.xid) { Some(p) => { xidmap = p; }, _ => { SCLogDebug!("REPLY: xid {:04X} NOT FOUND. GAPS? TS:{} TC:{}", r.hdr.xid, self.ts_ssn_gap, self.tc_ssn_gap); // TODO we might be able to try to infer from the size + data // that this is a READ reply and pass the data to the file API anyway? return 0; }, } SCLogDebug!("process_reply_record: removed xid {:04X} from requestmap", r.hdr.xid); if self.nfs_version == 0 { self.nfs_version = xidmap.progver as u16; } match xidmap.progver { 2 => { SCLogDebug!("NFSv2 reply record"); return self.process_reply_record_v2(r, &xidmap); }, 3 => { SCLogDebug!("NFSv3 reply record"); return self.process_reply_record_v3(r, &mut xidmap); }, 4 => { SCLogDebug!("NFSv4 reply record"); return self.process_reply_record_v4(r, &mut xidmap); }, _ => { SCLogDebug!("Invalid NFS version"); self.set_event(NFSEvent::NonExistingVersion); return 0; }, } } // update in progress chunks for file transfers // return how much data we consumed fn filetracker_update(&mut self, direction: u8, data: &[u8], gap_size: u32) -> u32 { let mut chunk_left = if direction == STREAM_TOSERVER { self.ts_chunk_left } else { self.tc_chunk_left }; if chunk_left == 0 { return 0 } let xid = if direction == STREAM_TOSERVER { self.ts_chunk_xid } else { self.tc_chunk_xid }; SCLogDebug!("filetracker_update: chunk left {}, input {} chunk_xid {:04X}", chunk_left, data.len(), xid); let file_handle; // we have the data that we expect if chunk_left <= data.len() as u32 { chunk_left = 0; if direction == STREAM_TOSERVER { self.ts_chunk_xid = 0; file_handle = self.ts_chunk_fh.to_vec(); self.ts_chunk_fh.clear(); } else { self.tc_chunk_xid = 0; // chunk done, remove requestmap entry match self.requestmap.remove(&xid) { None => { SCLogDebug!("no file handle found for XID {:04X}", xid); return 0 }, Some(xidmap) => { file_handle = xidmap.file_handle.to_vec(); }, } } } else { chunk_left -= data.len() as u32; if direction == STREAM_TOSERVER { file_handle = self.ts_chunk_fh.to_vec(); } else { // see if we have a file handle to work on match self.requestmap.get(&xid) { None => { SCLogDebug!("no file handle found for XID {:04X}", xid); return 0 }, Some(xidmap) => { file_handle = xidmap.file_handle.to_vec(); }, } } } if direction == STREAM_TOSERVER { self.ts_chunk_left = chunk_left; } else { self.tc_chunk_left = chunk_left; } let ssn_gap = self.ts_ssn_gap | self.tc_ssn_gap; // get the tx and update it let consumed = match self.get_file_tx_by_handle(&file_handle, direction) { Some((tx, files, flags)) => { if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { if ssn_gap { let queued_data = tdf.file_tracker.get_queued_size(); if queued_data > 2000000 { // TODO should probably be configurable SCLogDebug!("QUEUED size {} while we've seen GAPs. Truncating file.", queued_data); tdf.file_tracker.trunc(files, flags); } } tdf.chunk_count += 1; let cs = tdf.file_tracker.update(files, flags, data, gap_size); /* see if we need to close the tx */ if tdf.file_tracker.is_done() { if direction == STREAM_TOCLIENT { tx.response_done = true; SCLogDebug!("TX {} response is done now that the file track is ready", tx.id); } else { tx.request_done = true; SCLogDebug!("TX {} request is done now that the file track is ready", tx.id); } } cs } else { 0 } }, None => { 0 }, }; return consumed; } /// xidmapr is an Option as it's already removed from the map if we /// have a complete record. Otherwise we do a lookup ourselves. pub fn process_read_record<'b>(&mut self, r: &RpcReplyPacket<'b>, reply: &NfsReplyRead<'b>, xidmapr: Option<&NFSRequestXidMap>) -> u32 { let file_name; let file_handle; let chunk_offset; let nfs_version; match xidmapr { Some(xidmap) => { file_name = xidmap.file_name.to_vec(); file_handle = xidmap.file_handle.to_vec(); chunk_offset = xidmap.chunk_offset; nfs_version = xidmap.progver; }, None => { if let Some(xidmap) = self.requestmap.get(&r.hdr.xid) { file_name = xidmap.file_name.to_vec(); file_handle = xidmap.file_handle.to_vec(); chunk_offset = xidmap.chunk_offset; nfs_version = xidmap.progver; } else { return 0; } }, } SCLogDebug!("chunk_offset {}", chunk_offset); let mut is_last = reply.eof; let mut fill_bytes = 0; let pad = reply.count % 4; if pad != 0 { fill_bytes = 4 - pad; } SCLogDebug!("XID {} is_last {} fill_bytes {} reply.count {} reply.data_len {} reply.data.len() {}", r.hdr.xid, is_last, fill_bytes, reply.count, reply.data_len, reply.data.len()); if nfs_version == 2 { let size = match parse_nfs2_attribs(reply.attr_blob) { Ok((_, ref attr)) => { attr.asize }, _ => { 0 }, }; SCLogDebug!("NFSv2 READ reply record: File size {}. Offset {} data len {}: total {}", size, chunk_offset, reply.data_len, chunk_offset + reply.data_len as u64); if size as u64 == chunk_offset + reply.data_len as u64 { is_last = true; } } let is_partial = reply.data.len() < reply.count as usize; SCLogDebug!("partial data? {}", is_partial); let found = match self.get_file_tx_by_handle(&file_handle, STREAM_TOCLIENT) { Some((tx, files, flags)) => { SCLogDebug!("updated TX {:?}", tx); if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { filetracker_newchunk(&mut tdf.file_tracker, files, flags, &file_name, reply.data, chunk_offset, reply.count, fill_bytes as u8, is_last, &r.hdr.xid); tdf.chunk_count += 1; if is_last { tdf.file_last_xid = r.hdr.xid; tx.rpc_response_status = r.reply_state; tx.nfs_response_status = reply.status; tx.is_last = true; tx.request_done = true; /* if this is a partial record we will close the tx * when we've received the final data */ if !is_partial { tx.response_done = true; SCLogDebug!("TX {} is DONE", tx.id); } } true } else { false } }, None => { false }, }; if !found { let (tx, files, flags) = self.new_file_tx(&file_handle, &file_name, STREAM_TOCLIENT); if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { filetracker_newchunk(&mut tdf.file_tracker, files, flags, &file_name, reply.data, chunk_offset, reply.count, fill_bytes as u8, is_last, &r.hdr.xid); tx.procedure = if nfs_version < 4 { NFSPROC3_READ } else { NFSPROC4_READ }; tx.xid = r.hdr.xid; tx.is_first = true; if is_last { tdf.file_last_xid = r.hdr.xid; tx.rpc_response_status = r.reply_state; tx.nfs_response_status = reply.status; tx.is_last = true; tx.request_done = true; /* if this is a partial record we will close the tx * when we've received the final data */ if !is_partial { tx.response_done = true; SCLogDebug!("TX {} is DONE", tx.id); } } } } if !self.is_udp { self.tc_chunk_xid = r.hdr.xid; self.tc_chunk_left = (reply.count as u32 + fill_bytes) - reply.data.len() as u32; } SCLogDebug!("REPLY {} to procedure {} blob size {} / {}: chunk_left {} chunk_xid {:04X}", r.hdr.xid, NFSPROC3_READ, r.prog_data.len(), reply.count, self.tc_chunk_left, self.tc_chunk_xid); 0 } fn process_partial_read_reply_record<'b>(&mut self, r: &RpcReplyPacket<'b>, reply: &NfsReplyRead<'b>) -> u32 { SCLogDebug!("REPLY {} to procedure READ blob size {} / {}", r.hdr.xid, r.prog_data.len(), reply.count); return self.process_read_record(r, reply, None); } fn peek_reply_record(&mut self, r: &RpcPacketHeader) -> u32 { let xidmap; match self.requestmap.get(&r.xid) { Some(p) => { xidmap = p; }, _ => { SCLogDebug!("REPLY: xid {} NOT FOUND", r.xid); return 0; }, } xidmap.procedure } pub fn parse_tcp_data_ts_gap<'b>(&mut self, gap_size: u32) -> u32 { SCLogDebug!("parse_tcp_data_ts_gap ({})", gap_size); if self.tcp_buffer_ts.len() > 0 { self.tcp_buffer_ts.clear(); } let gap = vec![0; gap_size as usize]; let consumed = self.filetracker_update(STREAM_TOSERVER, &gap, gap_size); if consumed > gap_size { SCLogDebug!("consumed more than GAP size: {} > {}", consumed, gap_size); return 1; } self.ts_ssn_gap = true; self.ts_gap = true; SCLogDebug!("parse_tcp_data_ts_gap ({}) done", gap_size); return 0 } pub fn parse_tcp_data_tc_gap<'b>(&mut self, gap_size: u32) -> u32 { SCLogDebug!("parse_tcp_data_tc_gap ({})", gap_size); if self.tcp_buffer_tc.len() > 0 { self.tcp_buffer_tc.clear(); } let gap = vec![0; gap_size as usize]; let consumed = self.filetracker_update(STREAM_TOCLIENT, &gap, gap_size); if consumed > gap_size { SCLogDebug!("consumed more than GAP size: {} > {}", consumed, gap_size); return 1; } self.tc_ssn_gap = true; self.tc_gap = true; SCLogDebug!("parse_tcp_data_tc_gap ({}) done", gap_size); return 0 } /// Parsing function, handling TCP chunks fragmentation pub fn parse_tcp_data_ts<'b>(&mut self, i: &'b[u8]) -> u32 { let mut v : Vec; let mut status = 0; SCLogDebug!("parse_tcp_data_ts ({})",i.len()); //SCLogDebug!("{:?}",i); // Check if TCP data is being defragmented let tcp_buffer = match self.tcp_buffer_ts.len() { 0 => i, _ => { v = self.tcp_buffer_ts.split_off(0); // sanity check vector length to avoid memory exhaustion if self.tcp_buffer_ts.len() + i.len() > 1000000 { SCLogDebug!("parse_tcp_data_ts: TS buffer exploded {} {}", self.tcp_buffer_ts.len(), i.len()); return 1; }; v.extend_from_slice(i); v.as_slice() }, }; //SCLogDebug!("tcp_buffer ({})",tcp_buffer.len()); let mut cur_i = tcp_buffer; if cur_i.len() > 1000000 { SCLogDebug!("BUG buffer exploded: {}", cur_i.len()); } // take care of in progress file chunk transfers // and skip buffer beyond it let consumed = self.filetracker_update(STREAM_TOSERVER, cur_i, 0); if consumed > 0 { if consumed > cur_i.len() as u32 { return 1; } cur_i = &cur_i[consumed as usize..]; } if self.ts_gap { SCLogDebug!("TS trying to catch up after GAP (input {})", cur_i.len()); let mut cnt = 0; while cur_i.len() > 0 { cnt += 1; match nfs_probe(cur_i, STREAM_TOSERVER) { 1 => { SCLogDebug!("expected data found"); self.ts_gap = false; break; }, 0 => { SCLogDebug!("incomplete, queue and retry with the next block (input {}). Looped {} times.", cur_i.len(), cnt); self.tcp_buffer_tc.extend_from_slice(cur_i); return 0; }, -1 => { cur_i = &cur_i[1..]; if cur_i.len() == 0 { SCLogDebug!("all post-GAP data in this chunk was bad. Looped {} times.", cnt); } }, _ => { return 1; }, } } SCLogDebug!("TS GAP handling done (input {})", cur_i.len()); } while cur_i.len() > 0 { // min record size match parse_rpc_request_partial(cur_i) { Ok((_, ref rpc_phdr)) => { let rec_size = (rpc_phdr.hdr.frag_len + 4) as usize; //SCLogDebug!("rec_size {}/{}", rec_size, cur_i.len()); //SCLogDebug!("cur_i {:?}", cur_i); if rec_size > cur_i.len() { // special case: avoid buffering file write blobs // as these can be large. if rec_size >= 512 && cur_i.len() >= 44 { // large record, likely file xfer SCLogDebug!("large record {}, likely file xfer", rec_size); // quick peek, are in WRITE mode? if rpc_phdr.procedure == NFSPROC3_WRITE { SCLogDebug!("CONFIRMED WRITE: large record {}, file chunk xfer", rec_size); // lets try to parse the RPC record. Might fail with Incomplete. match parse_rpc(cur_i) { Ok((remaining, ref rpc_record)) => { match parse_nfs3_request_write(rpc_record.prog_data) { Ok((_, ref nfs_request_write)) => { // deal with the partial nfs write data status |= self.process_partial_write_request_record(rpc_record, nfs_request_write); cur_i = remaining; // progress input past parsed record }, _ => { self.set_event(NFSEvent::MalformedData); }, } }, Err(nom::Err::Incomplete(_)) => { // we just size checked for the minimal record size above, // so if options are used (creds/verifier), we can still // have Incomplete data. Fall through to the buffer code // and try again on our next iteration. SCLogDebug!("TS data incomplete"); }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; }, } } } self.tcp_buffer_ts.extend_from_slice(cur_i); break; } // we have the full records size worth of data, // let's parse it match parse_rpc(&cur_i[..rec_size]) { Ok((_, ref rpc_record)) => { cur_i = &cur_i[rec_size..]; status |= self.process_request_record(rpc_record); }, Err(nom::Err::Incomplete(_)) => { cur_i = &cur_i[rec_size..]; // progress input past parsed record // we shouldn't get incomplete as we have the full data // so if we got incomplete anyway it's the data that is // bad. self.set_event(NFSEvent::MalformedData); status = 1; }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; }, } }, Err(nom::Err::Incomplete(_)) => { SCLogDebug!("Fragmentation required (TCP level) 2"); self.tcp_buffer_ts.extend_from_slice(cur_i); break; }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; }, } }; status } /// Parsing function, handling TCP chunks fragmentation pub fn parse_tcp_data_tc<'b>(&mut self, i: &'b[u8]) -> u32 { let mut v : Vec; let mut status = 0; SCLogDebug!("parse_tcp_data_tc ({})",i.len()); //SCLogDebug!("{:?}",i); // Check if TCP data is being defragmented let tcp_buffer = match self.tcp_buffer_tc.len() { 0 => i, _ => { v = self.tcp_buffer_tc.split_off(0); // sanity check vector length to avoid memory exhaustion if self.tcp_buffer_tc.len() + i.len() > 100000 { SCLogDebug!("TC buffer exploded"); return 1; }; v.extend_from_slice(i); v.as_slice() }, }; SCLogDebug!("TC tcp_buffer ({}), input ({})",tcp_buffer.len(), i.len()); let mut cur_i = tcp_buffer; if cur_i.len() > 100000 { SCLogDebug!("parse_tcp_data_tc: BUG buffer exploded {}", cur_i.len()); } // take care of in progress file chunk transfers // and skip buffer beyond it let consumed = self.filetracker_update(STREAM_TOCLIENT, cur_i, 0); if consumed > 0 { if consumed > cur_i.len() as u32 { return 1; } cur_i = &cur_i[consumed as usize..]; } if self.tc_gap { SCLogDebug!("TC trying to catch up after GAP (input {})", cur_i.len()); let mut cnt = 0; while cur_i.len() > 0 { cnt += 1; match nfs_probe(cur_i, STREAM_TOCLIENT) { 1 => { SCLogDebug!("expected data found"); self.tc_gap = false; break; }, 0 => { SCLogDebug!("incomplete, queue and retry with the next block (input {}). Looped {} times.", cur_i.len(), cnt); self.tcp_buffer_tc.extend_from_slice(cur_i); return 0; }, -1 => { cur_i = &cur_i[1..]; if cur_i.len() == 0 { SCLogDebug!("all post-GAP data in this chunk was bad. Looped {} times.", cnt); } }, _ => { return 1; }, } } SCLogDebug!("TC GAP handling done (input {})", cur_i.len()); } while cur_i.len() > 0 { match parse_rpc_packet_header(cur_i) { Ok((_, ref rpc_hdr)) => { let rec_size = (rpc_hdr.frag_len + 4) as usize; // see if we have all data available if rec_size > cur_i.len() { // special case: avoid buffering file read blobs // as these can be large. if rec_size >= 512 && cur_i.len() >= 128 {//36 { // large record, likely file xfer SCLogDebug!("large record {}, likely file xfer", rec_size); // quick peek, are in READ mode? if self.peek_reply_record(&rpc_hdr) == NFSPROC3_READ { SCLogDebug!("CONFIRMED large READ record {}, likely file chunk xfer", rec_size); // we should have enough data to parse the RPC record match parse_rpc_reply(cur_i) { Ok((remaining, ref rpc_record)) => { match parse_nfs3_reply_read(rpc_record.prog_data) { Ok((_, ref nfs_reply_read)) => { // deal with the partial nfs read data status |= self.process_partial_read_reply_record(rpc_record, nfs_reply_read); cur_i = remaining; // progress input past parsed record }, Err(nom::Err::Incomplete(_)) => { self.set_event(NFSEvent::MalformedData); }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; } } }, Err(nom::Err::Incomplete(_)) => { // size check was done for MINIMAL record size, // so Incomplete is normal. SCLogDebug!("TC data incomplete"); }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; } } } } self.tcp_buffer_tc.extend_from_slice(cur_i); break; } // we have the full data of the record, lets parse match parse_rpc_reply(&cur_i[..rec_size]) { Ok((_, ref rpc_record)) => { cur_i = &cur_i[rec_size..]; // progress input past parsed record status |= self.process_reply_record(rpc_record); }, Err(nom::Err::Incomplete(_)) => { cur_i = &cur_i[rec_size..]; // progress input past parsed record // we shouldn't get incomplete as we have the full data // so if we got incomplete anyway it's the data that is // bad. self.set_event(NFSEvent::MalformedData); status = 1; }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; } } }, Err(nom::Err::Incomplete(_)) => { SCLogDebug!("REPLY: insufficient data for HDR"); self.tcp_buffer_tc.extend_from_slice(cur_i); break; }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { self.set_event(NFSEvent::MalformedData); SCLogDebug!("Parsing failed: {:?}", _e); return 1; }, } }; status } /// Parsing function pub fn parse_udp_ts<'b>(&mut self, input: &'b[u8]) -> u32 { let mut status = 0; SCLogDebug!("parse_udp_ts ({})", input.len()); if input.len() > 0 { match parse_rpc_udp_request(input) { Ok((_, ref rpc_record)) => { self.is_udp = true; match rpc_record.progver { 3 => { status |= self.process_request_record(rpc_record); }, 2 => { status |= self.process_request_record_v2(rpc_record); }, _ => { status = 1; }, } }, Err(nom::Err::Incomplete(_)) => { }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { SCLogDebug!("Parsing failed: {:?}", _e); } } } status } /// Parsing function pub fn parse_udp_tc<'b>(&mut self, input: &'b[u8]) -> u32 { let mut status = 0; SCLogDebug!("parse_udp_tc ({})", input.len()); if input.len() > 0 { match parse_rpc_udp_reply(input) { Ok((_, ref rpc_record)) => { self.is_udp = true; status |= self.process_reply_record(rpc_record); }, Err(nom::Err::Incomplete(_)) => { }, Err(nom::Err::Error(_e)) | Err(nom::Err::Failure(_e)) => { SCLogDebug!("Parsing failed: {:?}", _e); } } }; status } fn getfiles(&mut self, direction: u8) -> * mut FileContainer { //SCLogDebug!("direction: {}", direction); if direction == STREAM_TOCLIENT { &mut self.files.files_tc as *mut FileContainer } else { &mut self.files.files_ts as *mut FileContainer } } fn setfileflags(&mut self, direction: u8, flags: u16) { SCLogDebug!("direction: {}, flags: {}", direction, flags); if direction == 1 { self.files.flags_tc = flags; } else { self.files.flags_ts = flags; } } } /// Returns *mut NFSState #[no_mangle] pub extern "C" fn rs_nfs_state_new() -> *mut libc::c_void { let state = NFSState::new(); let boxed = Box::new(state); SCLogDebug!("allocating state"); return unsafe{transmute(boxed)}; } /// Params: /// - state: *mut NFSState as void pointer #[no_mangle] pub extern "C" fn rs_nfs_state_free(state: *mut libc::c_void) { // Just unbox... SCLogDebug!("freeing state"); let mut nfs_state: Box = unsafe{transmute(state)}; nfs_state.free(); } /// C binding parse a NFS TCP request. Returns 1 on success, -1 on failure. #[no_mangle] pub extern "C" fn rs_nfs_parse_request(_flow: *mut Flow, state: &mut NFSState, _pstate: *mut libc::c_void, input: *mut u8, input_len: u32, _data: *mut libc::c_void) -> i8 { let buf = unsafe{std::slice::from_raw_parts(input, input_len as usize)}; SCLogDebug!("parsing {} bytes of request data", input_len); if state.parse_tcp_data_ts(buf) == 0 { 1 } else { -1 } } #[no_mangle] pub extern "C" fn rs_nfs_parse_request_tcp_gap( state: &mut NFSState, input_len: u32) -> i8 { if state.parse_tcp_data_ts_gap(input_len as u32) == 0 { return 1; } return -1; } #[no_mangle] pub extern "C" fn rs_nfs_parse_response(_flow: *mut Flow, state: &mut NFSState, _pstate: *mut libc::c_void, input: *mut u8, input_len: u32, _data: *mut libc::c_void) -> i8 { SCLogDebug!("parsing {} bytes of response data", input_len); let buf = unsafe{std::slice::from_raw_parts(input, input_len as usize)}; if state.parse_tcp_data_tc(buf) == 0 { 1 } else { -1 } } #[no_mangle] pub extern "C" fn rs_nfs_parse_response_tcp_gap( state: &mut NFSState, input_len: u32) -> i8 { if state.parse_tcp_data_tc_gap(input_len as u32) == 0 { return 1; } return -1; } /// C binding parse a DNS request. Returns 1 on success, -1 on failure. #[no_mangle] pub extern "C" fn rs_nfs_parse_request_udp(_flow: *mut Flow, state: &mut NFSState, _pstate: *mut libc::c_void, input: *mut u8, input_len: u32, _data: *mut libc::c_void) -> i8 { let buf = unsafe{std::slice::from_raw_parts(input, input_len as usize)}; SCLogDebug!("parsing {} bytes of request data", input_len); if state.parse_udp_ts(buf) == 0 { 1 } else { -1 } } #[no_mangle] pub extern "C" fn rs_nfs_parse_response_udp(_flow: *mut Flow, state: &mut NFSState, _pstate: *mut libc::c_void, input: *mut u8, input_len: u32, _data: *mut libc::c_void) -> i8 { SCLogDebug!("parsing {} bytes of response data", input_len); let buf = unsafe{std::slice::from_raw_parts(input, input_len as usize)}; if state.parse_udp_tc(buf) == 0 { 1 } else { -1 } } #[no_mangle] pub extern "C" fn rs_nfs_state_get_tx_count(state: &mut NFSState) -> u64 { SCLogDebug!("rs_nfs_state_get_tx_count: returning {}", state.tx_id); return state.tx_id; } #[no_mangle] pub extern "C" fn rs_nfs_state_get_tx(state: &mut NFSState, tx_id: u64) -> *mut NFSTransaction { match state.get_tx_by_id(tx_id) { Some(tx) => { return unsafe{transmute(tx)}; } None => { return std::ptr::null_mut(); } } } // for use with the C API call StateGetTxIterator #[no_mangle] pub extern "C" fn rs_nfs_state_get_tx_iterator( state: &mut NFSState, min_tx_id: u64, istate: &mut u64) -> applayer::AppLayerGetTxIterTuple { match state.get_tx_iterator(min_tx_id, istate) { Some((tx, out_tx_id, has_next)) => { let c_tx = unsafe { transmute(tx) }; let ires = applayer::AppLayerGetTxIterTuple::with_values(c_tx, out_tx_id, has_next); return ires; } None => { return applayer::AppLayerGetTxIterTuple::not_found(); } } } #[no_mangle] pub extern "C" fn rs_nfs_state_tx_free(state: &mut NFSState, tx_id: u64) { state.free_tx(tx_id); } #[no_mangle] pub extern "C" fn rs_nfs_state_progress_completion_status( _direction: u8) -> libc::c_int { return 1; } #[no_mangle] pub extern "C" fn rs_nfs_tx_get_alstate_progress(tx: &mut NFSTransaction, direction: u8) -> u8 { if direction == STREAM_TOSERVER && tx.request_done { //SCLogNotice!("TOSERVER progress 1"); return 1; } else if direction == STREAM_TOCLIENT && tx.response_done { //SCLogNotice!("TOCLIENT progress 1"); return 1; } else { //SCLogNotice!("{} progress 0", direction); return 0; } } #[no_mangle] pub extern "C" fn rs_nfs_tx_set_logged(_state: &mut NFSState, tx: &mut NFSTransaction, logged: u32) { tx.logged.set(logged); } #[no_mangle] pub extern "C" fn rs_nfs_tx_get_logged(_state: &mut NFSState, tx: &mut NFSTransaction) -> u32 { return tx.logged.get(); } #[no_mangle] pub extern "C" fn rs_nfs_state_set_tx_detect_state( tx: &mut NFSTransaction, de_state: &mut DetectEngineState) { tx.de_state = Some(de_state); } #[no_mangle] pub extern "C" fn rs_nfs_state_get_tx_detect_state( tx: &mut NFSTransaction) -> *mut DetectEngineState { match tx.de_state { Some(ds) => { SCLogDebug!("{}: getting de_state", tx.id); return ds; }, None => { SCLogDebug!("{}: getting de_state: have none", tx.id); return std::ptr::null_mut(); } } } #[no_mangle] pub extern "C" fn rs_nfs_tx_set_detect_flags( tx: &mut NFSTransaction, direction: u8, flags: u64) { if (direction & STREAM_TOSERVER) != 0 { tx.detect_flags_ts = flags as u64; } else { tx.detect_flags_tc = flags as u64; } } #[no_mangle] pub extern "C" fn rs_nfs_tx_get_detect_flags( tx: &mut NFSTransaction, direction: u8) -> u64 { if (direction & STREAM_TOSERVER) != 0 { return tx.detect_flags_ts as u64; } else { return tx.detect_flags_tc as u64; } } #[no_mangle] pub extern "C" fn rs_nfs_state_get_events(tx: *mut libc::c_void) -> *mut AppLayerDecoderEvents { let tx = cast_pointer!(tx, NFSTransaction); return tx.events; } #[no_mangle] pub extern "C" fn rs_nfs_state_get_event_info(event_name: *const libc::c_char, event_id: *mut libc::c_int, event_type: *mut AppLayerEventType) -> i8 { if event_name == std::ptr::null() { return -1; } let c_event_name: &CStr = unsafe { CStr::from_ptr(event_name) }; let event = match c_event_name.to_str() { Ok(s) => { match s { "malformed_data" => NFSEvent::MalformedData as i32, _ => -1, // unknown event } }, Err(_) => -1, // UTF-8 conversion failed }; unsafe{ *event_type = APP_LAYER_EVENT_TYPE_TRANSACTION; *event_id = event as libc::c_int; }; 0 } /// return procedure(s) in the tx. At 0 return the main proc, /// otherwise get procs from the 'file_additional_procs'. /// Keep calling until 0 is returned. #[no_mangle] pub extern "C" fn rs_nfs_tx_get_procedures(tx: &mut NFSTransaction, i: u16, procedure: *mut u32) -> u8 { if i == 0 { unsafe { *procedure = tx.procedure as u32; } return 1; } if !tx.is_file_tx { return 0; } /* file tx handling follows */ if let Some(NFSTransactionTypeData::FILE(ref mut tdf)) = tx.type_data { let idx = i as usize - 1; if idx < tdf.file_additional_procs.len() { let p = tdf.file_additional_procs[idx]; unsafe { *procedure = p as u32; } return 1; } } return 0; } #[no_mangle] pub extern "C" fn rs_nfs_tx_get_version(tx: &mut NFSTransaction, version: *mut u32) { unsafe { *version = tx.nfs_version as u32; } } #[no_mangle] pub extern "C" fn rs_nfs_init(context: &'static mut SuricataFileContext) { unsafe { SURICATA_NFS_FILE_CONFIG = Some(context); } } fn nfs_probe_dir(i: &[u8], rdir: *mut u8) -> i8 { match parse_rpc_packet_header(i) { Ok((_, ref hdr)) => { let dir = if hdr.msgtype == 0 { STREAM_TOSERVER } else { STREAM_TOCLIENT }; unsafe { *rdir = dir }; return 1; }, Err(nom::Err::Incomplete(_)) => { return 0; }, Err(_) => { return -1; }, } } pub fn nfs_probe(i: &[u8], direction: u8) -> i8 { if direction == STREAM_TOCLIENT { match parse_rpc_reply(i) { Ok((_, ref rpc)) => { if rpc.hdr.frag_len >= 24 && rpc.hdr.frag_len <= 35000 && rpc.hdr.msgtype == 1 && rpc.reply_state == 0 && rpc.accept_state == 0 { SCLogDebug!("TC PROBE LEN {} XID {} TYPE {}", rpc.hdr.frag_len, rpc.hdr.xid, rpc.hdr.msgtype); return 1; } else { return -1; } }, Err(nom::Err::Incomplete(_)) => { match parse_rpc_packet_header (i) { Ok((_, ref rpc_hdr)) => { if rpc_hdr.frag_len >= 24 && rpc_hdr.frag_len <= 35000 && rpc_hdr.xid != 0 && rpc_hdr.msgtype == 1 { SCLogDebug!("TC PROBE LEN {} XID {} TYPE {}", rpc_hdr.frag_len, rpc_hdr.xid, rpc_hdr.msgtype); return 1; } else { return -1; } }, Err(nom::Err::Incomplete(_)) => { }, Err(_) => { return -1; }, } return 0; }, Err(_) => { return -1; }, } } else { match parse_rpc(i) { Ok((_, ref rpc)) => { if rpc.hdr.frag_len >= 40 && rpc.hdr.msgtype == 0 && rpc.rpcver == 2 && (rpc.progver == 3 || rpc.progver == 4) && rpc.program == 100003 && rpc.procedure <= NFSPROC3_COMMIT { return 1; } else { return -1; } }, Err(nom::Err::Incomplete(_)) => { return 0; }, Err(_) => { return -1; }, } } } pub fn nfs_probe_udp(i: &[u8], direction: u8) -> i8 { if direction == STREAM_TOCLIENT { match parse_rpc_udp_reply(i) { Ok((_, ref rpc)) => { if i.len() >= 32 && rpc.hdr.msgtype == 1 && rpc.reply_state == 0 && rpc.accept_state == 0 { SCLogDebug!("TC PROBE LEN {} XID {} TYPE {}", rpc.hdr.frag_len, rpc.hdr.xid, rpc.hdr.msgtype); return 1; } else { return -1; } }, Err(_) => { return -1; }, } } else { match parse_rpc_udp_request(i) { Ok((_, ref rpc)) => { if i.len() >= 48 && rpc.hdr.msgtype == 0 && rpc.progver == 3 && rpc.program == 100003 { return 1; } else if i.len() >= 48 && rpc.hdr.msgtype == 0 && rpc.progver == 2 && rpc.program == 100003 { SCLogDebug!("NFSv2!"); return 1; } else { return -1; } }, Err(_) => { return -1; }, } } } /// MIDSTREAM #[no_mangle] pub extern "C" fn rs_nfs_probe_ms( direction: u8, input: *const u8, len: u32, rdir: *mut u8) -> i8 { let slice: &[u8] = build_slice!(input, len as usize); SCLogDebug!("rs_nfs_probe_ms: probing direction {:02x}", direction); let mut adirection : u8 = 0; match nfs_probe_dir(slice, &mut adirection) { 1 => { if adirection == STREAM_TOSERVER { SCLogDebug!("nfs_probe_dir said STREAM_TOSERVER"); } else { SCLogDebug!("nfs_probe_dir said STREAM_TOCLIENT"); } let r = nfs_probe(slice, adirection); if r == 1 { SCLogDebug!("nfs_probe success: dir {:02x} adir {:02x}", direction, adirection); if (direction & (STREAM_TOSERVER|STREAM_TOCLIENT)) != adirection { unsafe { *rdir = adirection; } } return 1; } return r; }, 0 => { return 0; }, _ => { return -1; } } } #[no_mangle] pub extern "C" fn rs_nfs_probe(direction: u8, input: *const u8, len: u32) -> i8 { let slice: &[u8] = build_slice!(input, len as usize); SCLogDebug!("rs_nfs_probe: running probe"); return nfs_probe(slice, direction); } /// TOSERVER probe function #[no_mangle] pub extern "C" fn rs_nfs_probe_udp_ts(input: *const u8, len: u32) -> i8 { let slice: &[u8] = build_slice!(input, len as usize); return nfs_probe_udp(slice, STREAM_TOSERVER); } /// TOCLIENT probe function #[no_mangle] pub extern "C" fn rs_nfs_probe_udp_tc(input: *const u8, len: u32) -> i8 { let slice: &[u8] = build_slice!(input, len as usize); return nfs_probe_udp(slice, STREAM_TOCLIENT); } #[no_mangle] pub extern "C" fn rs_nfs_getfiles(direction: u8, ptr: *mut NFSState) -> * mut FileContainer { if ptr.is_null() { panic!("NULL ptr"); }; let parser = unsafe { &mut *ptr }; parser.getfiles(direction) } #[no_mangle] pub extern "C" fn rs_nfs_setfileflags(direction: u8, ptr: *mut NFSState, flags: u16) { if ptr.is_null() { panic!("NULL ptr"); }; let parser = unsafe { &mut *ptr }; SCLogDebug!("direction {} flags {}", direction, flags); parser.setfileflags(direction, flags) }