/* Copyright (C) 2007-2013 Open Information Security Foundation * * You can copy, redistribute or modify this Program under the terms of * the GNU General Public License version 2 as published by the Free * Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * version 2 along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ /** * \file * * \author Anoop Saldanha * * Performance counters */ #include "suricata-common.h" #include "suricata.h" #include "counters.h" #include "threadvars.h" #include "tm-threads.h" #include "conf.h" #include "util-time.h" #include "util-unittest.h" #include "util-debug.h" #include "util-privs.h" #include "util-signal.h" #include "unix-manager.h" /** \todo Get the default log directory from some global resource. */ #define SC_PERF_DEFAULT_LOG_FILENAME "stats.log" /* Used to parse the interval for Timebased counters */ #define SC_PERF_PCRE_TIMEBASED_INTERVAL "^(?:(\\d+)([shm]))(?:(\\d+)([shm]))?(?:(\\d+)([shm]))?$" static SCPerfOPIfaceContext *sc_perf_op_ctx = NULL; static time_t sc_start_time; /** refresh interval in seconds */ static uint32_t sc_counter_tts = SC_PERF_MGMTT_TTS; /** is the stats counter enabled? */ static char sc_counter_enabled = TRUE; /** append or overwrite? 1: append, 0: overwrite */ static char sc_counter_append = TRUE; /** * \brief Adds a value of type uint64_t to the local counter. * * \param id ID of the counter as set by the API * \param pca Counter array that holds the local counter for this TM * \param x Value to add to this local counter */ void SCPerfCounterAddUI64(uint16_t id, SCPerfCounterArray *pca, uint64_t x) { if (!pca) { SCLogDebug("counterarray is NULL"); return; } #ifdef DEBUG BUG_ON ((id < 1) || (id > pca->size)); #endif pca->head[id].ui64_cnt += x; pca->head[id].syncs++; return; } /** * \brief Increments the local counter * * \param id Index of the counter in the counter array * \param pca Counter array that holds the local counters for this TM */ void SCPerfCounterIncr(uint16_t id, SCPerfCounterArray *pca) { if (pca == NULL) { SCLogDebug("counterarray is NULL"); return; } #ifdef DEBUG BUG_ON ((id < 1) || (id > pca->size)); #endif pca->head[id].ui64_cnt++; pca->head[id].syncs++; return; } /** * \brief Sets a value of type double to the local counter * * \param id Index of the local counter in the counter array * \param pca Pointer to the SCPerfCounterArray * \param x The value to set for the counter */ void SCPerfCounterSetUI64(uint16_t id, SCPerfCounterArray *pca, uint64_t x) { if (!pca) { SCLogDebug("counterarray is NULL"); return; } #ifdef DEBUG BUG_ON ((id < 1) || (id > pca->size)); #endif if ((pca->head[id].pc->type == SC_PERF_TYPE_Q_MAXIMUM) && (x > pca->head[id].ui64_cnt)) { pca->head[id].ui64_cnt = x; } else if (pca->head[id].pc->type == SC_PERF_TYPE_Q_NORMAL) { pca->head[id].ui64_cnt = x; } pca->head[id].syncs++; return; } /** * \brief Get the filename with path to the stats log file. * * This function returns a string containing the log filename. It uses * allocated memory simply to drop into the existing code a little better * where a SCStrdup was used. So as before, it is up to the caller to free * the memory. * * \retval An allocated string containing the log filename on success or NULL on * failure. */ static char *SCPerfGetLogFilename(ConfNode *stats) { char *log_dir = NULL; char *log_filename = NULL; const char* filename = NULL; log_dir = ConfigGetLogDirectory(); if ( (log_filename = SCMalloc(PATH_MAX)) == NULL) { return NULL; } if (stats != NULL) { filename = ConfNodeLookupChildValue(stats, "filename"); if (filename == NULL) { filename = SC_PERF_DEFAULT_LOG_FILENAME; } } else { filename = SC_PERF_DEFAULT_LOG_FILENAME; } if (snprintf(log_filename, PATH_MAX, "%s/%s", log_dir, filename) < 0) { SCLogError(SC_ERR_SPRINTF, "Sprintf Error"); SCFree(log_filename); return NULL; } return log_filename; } /** * \brief Initializes the output interface context * * \todo Support multiple interfaces */ static void SCPerfInitOPCtx(void) { SCEnter(); ConfNode *root = ConfGetNode("outputs"); ConfNode *node = NULL; ConfNode *stats = NULL; if (root != NULL) { TAILQ_FOREACH(node, &root->head, next) { if (strncmp(node->val, "stats", 5) == 0) { stats = node->head.tqh_first; } } } /* Check if the stats module is enabled or not */ if (stats != NULL) { const char *enabled = ConfNodeLookupChildValue(stats, "enabled"); if (enabled != NULL && ConfValIsFalse(enabled)) { sc_counter_enabled = FALSE; SCLogDebug("Stats module has been disabled"); SCReturn; } const char *interval = ConfNodeLookupChildValue(stats, "interval"); if (interval != NULL) sc_counter_tts = (uint32_t) atoi(interval); const char *append = ConfNodeLookupChildValue(stats, "append"); if (append != NULL) sc_counter_append = ConfValIsTrue(append); } /* Store the engine start time */ time(&sc_start_time); if ( (sc_perf_op_ctx = SCMalloc(sizeof(SCPerfOPIfaceContext))) == NULL) { SCLogError(SC_ERR_FATAL, "Fatal error encountered in SCPerfInitOPCtx. Exiting..."); exit(EXIT_FAILURE); } memset(sc_perf_op_ctx, 0, sizeof(SCPerfOPIfaceContext)); sc_perf_op_ctx->iface = SC_PERF_IFACE_FILE; if ( (sc_perf_op_ctx->file = SCPerfGetLogFilename(stats)) == NULL) { SCLogInfo("Error retrieving Perf Counter API output file path"); } char *mode; if (sc_counter_append) mode = "a+"; else mode = "w+"; if ( (sc_perf_op_ctx->fp = fopen(sc_perf_op_ctx->file, mode)) == NULL) { SCLogError(SC_ERR_FOPEN, "fopen error opening file \"%s\". Resorting " "to using the standard output for output", sc_perf_op_ctx->file); SCFree(sc_perf_op_ctx->file); /* Let us use the standard output for output */ sc_perf_op_ctx->fp = stdout; if ( (sc_perf_op_ctx->file = SCStrdup("stdout")) == NULL) { SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory"); exit(EXIT_FAILURE); } } /* init the lock used by SCPerfClubTMInst */ if (SCMutexInit(&sc_perf_op_ctx->pctmi_lock, NULL) != 0) { SCLogError(SC_ERR_INITIALIZATION, "error initializing pctmi mutex"); exit(EXIT_FAILURE); } SCReturn; } /** * \brief Releases the resources alloted to the output context of the Perf * Counter API */ static void SCPerfReleaseOPCtx() { if (sc_perf_op_ctx == NULL) { SCLogDebug("Counter module has been disabled"); return; } SCPerfClubTMInst *pctmi = NULL; SCPerfClubTMInst *temp = NULL; pctmi = sc_perf_op_ctx->pctmi; if (sc_perf_op_ctx->fp != NULL) fclose(sc_perf_op_ctx->fp); if (sc_perf_op_ctx->file != NULL) SCFree(sc_perf_op_ctx->file); while (pctmi != NULL) { if (pctmi->tm_name != NULL) SCFree(pctmi->tm_name); if (pctmi->head != NULL) SCFree(pctmi->head); temp = pctmi->next; SCFree(pctmi); pctmi = temp; } SCFree(sc_perf_op_ctx); sc_perf_op_ctx = NULL; return; } /** * \brief The management thread. This thread is responsible for writing the * performance stats information. * * \param arg is NULL always * * \retval NULL This is the value that is always returned */ static void *SCPerfMgmtThread(void *arg) { /* block usr2. usr2 to be handled by the main thread only */ UtilSignalBlock(SIGUSR2); ThreadVars *tv_local = (ThreadVars *)arg; uint8_t run = 1; struct timespec cond_time; /* Set the thread name */ if (SCSetThreadName(tv_local->name) < 0) { SCLogWarning(SC_ERR_THREAD_INIT, "Unable to set thread name"); } if (tv_local->thread_setup_flags != 0) TmThreadSetupOptions(tv_local); /* Set the threads capability */ tv_local->cap_flags = 0; SCDropCaps(tv_local); if (sc_perf_op_ctx == NULL) { SCLogError(SC_ERR_PERF_STATS_NOT_INIT, "Perf Counter API not init" "SCPerfInitCounterApi() has to be called first"); TmThreadsSetFlag(tv_local, THV_CLOSED | THV_RUNNING_DONE); return NULL; } TmThreadsSetFlag(tv_local, THV_INIT_DONE); while (run) { if (TmThreadsCheckFlag(tv_local, THV_PAUSE)) { TmThreadsSetFlag(tv_local, THV_PAUSED); TmThreadTestThreadUnPaused(tv_local); TmThreadsUnsetFlag(tv_local, THV_PAUSED); } cond_time.tv_sec = time(NULL) + sc_counter_tts; cond_time.tv_nsec = 0; SCCtrlMutexLock(tv_local->ctrl_mutex); SCCtrlCondTimedwait(tv_local->ctrl_cond, tv_local->ctrl_mutex, &cond_time); SCCtrlMutexUnlock(tv_local->ctrl_mutex); SCPerfOutputCounters(); if (TmThreadsCheckFlag(tv_local, THV_KILL)) { run = 0; } } TmThreadsSetFlag(tv_local, THV_RUNNING_DONE); TmThreadWaitForFlag(tv_local, THV_DEINIT); TmThreadsSetFlag(tv_local, THV_CLOSED); return NULL; } /** * \brief Wake up thread. This thread wakes up every TTS(time to sleep) seconds * and sets the flag for every ThreadVars' SCPerfContext * * \param arg is NULL always * * \retval NULL This is the value that is always returned */ static void *SCPerfWakeupThread(void *arg) { /* block usr2. usr2 to be handled by the main thread only */ UtilSignalBlock(SIGUSR2); ThreadVars *tv_local = (ThreadVars *)arg; uint8_t run = 1; ThreadVars *tv = NULL; PacketQueue *q = NULL; struct timespec cond_time; /* Set the thread name */ if (SCSetThreadName(tv_local->name) < 0) { SCLogWarning(SC_ERR_THREAD_INIT, "Unable to set thread name"); } if (tv_local->thread_setup_flags != 0) TmThreadSetupOptions(tv_local); /* Set the threads capability */ tv_local->cap_flags = 0; SCDropCaps(tv_local); if (sc_perf_op_ctx == NULL) { SCLogError(SC_ERR_PERF_STATS_NOT_INIT, "Perf Counter API not init" "SCPerfInitCounterApi() has to be called first"); TmThreadsSetFlag(tv_local, THV_CLOSED | THV_RUNNING_DONE); return NULL; } TmThreadsSetFlag(tv_local, THV_INIT_DONE); while (run) { if (TmThreadsCheckFlag(tv_local, THV_PAUSE)) { TmThreadsSetFlag(tv_local, THV_PAUSED); TmThreadTestThreadUnPaused(tv_local); TmThreadsUnsetFlag(tv_local, THV_PAUSED); } cond_time.tv_sec = time(NULL) + SC_PERF_WUT_TTS; cond_time.tv_nsec = 0; SCCtrlMutexLock(tv_local->ctrl_mutex); SCCtrlCondTimedwait(tv_local->ctrl_cond, tv_local->ctrl_mutex, &cond_time); SCCtrlMutexUnlock(tv_local->ctrl_mutex); tv = tv_root[TVT_PPT]; while (tv != NULL) { if (tv->sc_perf_pctx.head == NULL) { tv = tv->next; continue; } /* assuming the assignment of an int to be atomic, and even if it's * not, it should be okay */ tv->sc_perf_pctx.perf_flag = 1; if (tv->inq != NULL) { q = &trans_q[tv->inq->id]; SCCondSignal(&q->cond_q); } tv = tv->next; } /* mgt threads for flow manager */ tv = tv_root[TVT_MGMT]; while (tv != NULL) { if (tv->sc_perf_pctx.head == NULL) { tv = tv->next; continue; } /* assuming the assignment of an int to be atomic, and even if it's * not, it should be okay */ tv->sc_perf_pctx.perf_flag = 1; tv = tv->next; } if (TmThreadsCheckFlag(tv_local, THV_KILL)) { run = 0; } } TmThreadsSetFlag(tv_local, THV_RUNNING_DONE); TmThreadWaitForFlag(tv_local, THV_DEINIT); TmThreadsSetFlag(tv_local, THV_CLOSED); return NULL; } /** * \brief Releases a perf counter. Used internally by * SCPerfReleasePerfCounterS() * * \param pc Pointer to the SCPerfCounter to be freed */ static void SCPerfReleaseCounter(SCPerfCounter *pc) { if (pc != NULL) { if (pc->cname != NULL) SCFree(pc->cname); if (pc->tm_name != NULL) SCFree(pc->tm_name); if (pc->desc != NULL) SCFree(pc->desc); SCFree(pc); } return; } /** * \brief Registers a counter. Used internally by the Perf Counter API * * \param cname Name of the counter, to be registered * \param tm_name Thread module to which this counter belongs * \param type Datatype of this counter variable * \param desc Description of this counter * \param pctx SCPerfContext for this tm-tv instance * \param type_q Qualifier describing the type of counter to be registered * * \retval the counter id for the newly registered counter, or the already * present counter on success * \retval 0 on failure */ static uint16_t SCPerfRegisterQualifiedCounter(char *cname, char *tm_name, int type, char *desc, SCPerfContext *pctx, int type_q) { SCPerfCounter **head = &pctx->head; SCPerfCounter *temp = NULL; SCPerfCounter *prev = NULL; SCPerfCounter *pc = NULL; if (cname == NULL || tm_name == NULL || pctx == NULL) { SCLogDebug("Counter name, tm name null or SCPerfContext NULL"); return 0; } if ((type >= SC_PERF_TYPE_MAX) || (type < 0)) { SCLogError(SC_ERR_INVALID_ARGUMENTS, "Counters of type %" PRId32 " can't " "be registered", type); return 0; } temp = prev = *head; while (temp != NULL) { prev = temp; if (strcmp(cname, temp->cname) == 0 && strcmp(tm_name, temp->tm_name) == 0) { break; } temp = temp->next; } /* We already have a counter registered by this name */ if (temp != NULL) return(temp->id); /* if we reach this point we don't have a counter registered by this cname */ if ( (pc = SCMalloc(sizeof(SCPerfCounter))) == NULL) return 0; memset(pc, 0, sizeof(SCPerfCounter)); if ( (pc->cname = SCStrdup(cname)) == NULL) { SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory"); exit(EXIT_FAILURE); } if ( (pc->tm_name = SCStrdup(tm_name)) == NULL) { SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory"); exit(EXIT_FAILURE); } /* assign a unique id to this SCPerfCounter. The id is local to this * PerfContext. Please note that the id start from 1, and not 0 */ pc->id = ++(pctx->curr_id); if (desc != NULL && (pc->desc = SCStrdup(desc)) == NULL) { SCLogError(SC_ERR_MEM_ALLOC, "Error allocating memory"); exit(EXIT_FAILURE); } pc->type = type_q; /* we now add the counter to the list */ if (prev == NULL) *head = pc; else prev->next = pc; return pc->id; } /** * \brief Copies the SCPerfCounter value from the local counter present in the * SCPerfCounterArray to its corresponding global counterpart. Used * internally by SCPerfUpdateCounterArray() * * \param pcae Pointer to the SCPerfCounterArray which holds the local * versions of the counters */ static void SCPerfCopyCounterValue(SCPCAElem *pcae) { SCPerfCounter *pc = NULL; uint64_t ui64_temp = 0; pc = pcae->pc; ui64_temp = pcae->ui64_cnt; if (pc->type == SC_PERF_TYPE_Q_AVERAGE) { if (pcae->syncs != 0) ui64_temp /= pcae->syncs; pc->value = ui64_temp; } else { pc->value = ui64_temp; } return; } /** * \brief Calculates counter value that should be sent as output * * If we aren't dealing with timebased counters, we just return the * the counter value. In case of Timebased counters, if we haven't * crossed the interval, we display the current value without any * modifications. If we have crossed the limit, we calculate the counter * value for the time period and also return 1, to indicate that the * counter value can be reset after use * * \param pc Pointer to the PerfCounter for which the timebased counter has to * be calculated */ static uint64_t SCPerfOutputCalculateCounterValue(SCPerfCounter *pc) { return pc->value; } /** * \brief The file output interface for the Perf Counter api */ static int SCPerfOutputCounterFileIface() { SCPerfClubTMInst *pctmi = NULL; SCPerfCounter *pc = NULL; SCPerfCounter **pc_heads = NULL; uint64_t ui64_temp = 0; uint64_t ui64_result = 0; struct timeval tval; struct tm *tms; uint32_t u = 0; int flag = 0; if (sc_perf_op_ctx->fp == NULL) { SCLogDebug("perf_op_ctx->fp is NULL"); return 0; } memset(&tval, 0, sizeof(struct timeval)); gettimeofday(&tval, NULL); struct tm local_tm; tms = SCLocalTime(tval.tv_sec, &local_tm); /* Calculate the Engine uptime */ int up_time = (int)difftime(tval.tv_sec, sc_start_time); int sec = up_time % 60; // Seconds in a minute int in_min = up_time / 60; int min = in_min % 60; // Minutes in a hour int in_hours = in_min / 60; int hours = in_hours % 24; // Hours in a day int days = in_hours / 24; fprintf(sc_perf_op_ctx->fp, "----------------------------------------------" "---------------------\n"); fprintf(sc_perf_op_ctx->fp, "Date: %" PRId32 "/%" PRId32 "/%04d -- " "%02d:%02d:%02d (uptime: %"PRId32"d, %02dh %02dm %02ds)\n", tms->tm_mon + 1, tms->tm_mday, tms->tm_year + 1900, tms->tm_hour, tms->tm_min, tms->tm_sec, days, hours, min, sec); fprintf(sc_perf_op_ctx->fp, "----------------------------------------------" "---------------------\n"); fprintf(sc_perf_op_ctx->fp, "%-25s | %-25s | %-s\n", "Counter", "TM Name", "Value"); fprintf(sc_perf_op_ctx->fp, "----------------------------------------------" "---------------------\n"); pctmi = sc_perf_op_ctx->pctmi; while (pctmi != NULL) { if ((pc_heads = SCMalloc(pctmi->size * sizeof(SCPerfCounter *))) == NULL) return 0; memset(pc_heads, 0, pctmi->size * sizeof(SCPerfCounter *)); for (u = 0; u < pctmi->size; u++) { pc_heads[u] = pctmi->head[u]->head; SCMutexLock(&pctmi->head[u]->m); } flag = 1; while (flag) { ui64_result = 0; if (pc_heads[0] == NULL) break; /* keep ptr to first pc to we can use it to print the cname */ pc = pc_heads[0]; for (u = 0; u < pctmi->size; u++) { ui64_temp = SCPerfOutputCalculateCounterValue(pc_heads[u]); ui64_result += ui64_temp; if (pc_heads[u] != NULL) pc_heads[u] = pc_heads[u]->next; if (pc_heads[u] == NULL) flag = 0; } fprintf(sc_perf_op_ctx->fp, "%-25s | %-25s | %-" PRIu64 "\n", pc->cname, pctmi->tm_name, ui64_result); } for (u = 0; u < pctmi->size; u++) SCMutexUnlock(&pctmi->head[u]->m); pctmi = pctmi->next; SCFree(pc_heads); fflush(sc_perf_op_ctx->fp); } return 1; } #ifdef BUILD_UNIX_SOCKET /** * \brief The file output interface for the Perf Counter api */ TmEcode SCPerfOutputCounterSocket(json_t *cmd, json_t *answer, void *data) { SCPerfClubTMInst *pctmi = NULL; SCPerfCounter *pc = NULL; SCPerfCounter **pc_heads = NULL; uint64_t ui64_temp = 0; uint64_t ui64_result = 0; uint32_t u = 0; int flag = 0; if (sc_perf_op_ctx == NULL) { json_object_set_new(answer, "message", json_string("No performance counter context")); return TM_ECODE_FAILED; } json_t *tm_array; tm_array = json_object(); if (tm_array == NULL) { json_object_set_new(answer, "message", json_string("internal error at json object creation")); return TM_ECODE_FAILED; } pctmi = sc_perf_op_ctx->pctmi; while (pctmi != NULL) { json_t *jdata; int filled = 0; jdata = json_object(); if (jdata == NULL) { json_decref(tm_array); json_object_set_new(answer, "message", json_string("internal error at json object creation")); return TM_ECODE_FAILED; } if ((pc_heads = SCMalloc(pctmi->size * sizeof(SCPerfCounter *))) == NULL) { json_decref(tm_array); json_object_set_new(answer, "message", json_string("internal memory error")); return TM_ECODE_FAILED; } memset(pc_heads, 0, pctmi->size * sizeof(SCPerfCounter *)); for (u = 0; u < pctmi->size; u++) { pc_heads[u] = pctmi->head[u]->head; SCMutexLock(&pctmi->head[u]->m); } flag = 1; while(flag) { ui64_result = 0; if (pc_heads[0] == NULL) break; pc = pc_heads[0]; for (u = 0; u < pctmi->size; u++) { ui64_temp = SCPerfOutputCalculateCounterValue(pc_heads[u]); ui64_result += ui64_temp; if (pc_heads[u] != NULL) pc_heads[u] = pc_heads[u]->next; if (pc_heads[u] == NULL) flag = 0; } filled = 1; json_object_set_new(jdata, pc->cname, json_integer(ui64_result)); } for (u = 0; u < pctmi->size; u++) SCMutexUnlock(&pctmi->head[u]->m); if (filled == 1) { json_object_set_new(tm_array, pctmi->tm_name, jdata); } pctmi = pctmi->next; SCFree(pc_heads); } json_object_set_new(answer, "message", tm_array); return TM_ECODE_OK; } #endif /* BUILD_UNIX_SOCKET */ /** * \brief Initializes the perf counter api. Things are hard coded currently. * More work to be done when we implement multiple interfaces */ void SCPerfInitCounterApi(void) { SCPerfInitOPCtx(); return; } /** * \brief Spawns the wakeup, and the management thread used by the perf * counter api */ void SCPerfSpawnThreads(void) { SCEnter(); if (!sc_counter_enabled) { SCReturn; } ThreadVars *tv_wakeup = NULL; ThreadVars *tv_mgmt = NULL; /* spawn the stats wakeup thread */ tv_wakeup = TmThreadCreateMgmtThread("SCPerfWakeupThread", SCPerfWakeupThread, 1); if (tv_wakeup == NULL) { SCLogError(SC_ERR_THREAD_CREATE, "TmThreadCreateMgmtThread " "failed"); exit(EXIT_FAILURE); } if (TmThreadSpawn(tv_wakeup) != 0) { SCLogError(SC_ERR_THREAD_SPAWN, "TmThreadSpawn failed for " "SCPerfWakeupThread"); exit(EXIT_FAILURE); } /* spawn the stats mgmt thread */ tv_mgmt = TmThreadCreateMgmtThread("SCPerfMgmtThread", SCPerfMgmtThread, 1); if (tv_mgmt == NULL) { SCLogError(SC_ERR_THREAD_CREATE, "TmThreadCreateMgmtThread failed"); exit(EXIT_FAILURE); } if (TmThreadSpawn(tv_mgmt) != 0) { SCLogError(SC_ERR_THREAD_SPAWN, "TmThreadSpawn failed for " "SCPerfWakeupThread"); exit(EXIT_FAILURE); } SCReturn; } /** * \brief Registers a normal, unqualified counter * * \param cname Name of the counter, to be registered * \param tv Pointer to the ThreadVars instance for which the counter would * be registered * \param type Datatype of this counter variable * \param desc Description of this counter * * \retval id Counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfTVRegisterCounter(char *cname, struct ThreadVars_ *tv, int type, char *desc) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, (tv->thread_group_name != NULL) ? tv->thread_group_name : tv->name, type, desc, &tv->sc_perf_pctx, SC_PERF_TYPE_Q_NORMAL); return id; } /** * \brief Registers a counter, whose value holds the average of all the values * assigned to it. * * \param cname Name of the counter, to be registered * \param tv Pointer to the ThreadVars instance for which the counter would * be registered * \param type Datatype of this counter variable * \param desc Description of this counter * * \retval id Counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfTVRegisterAvgCounter(char *cname, struct ThreadVars_ *tv, int type, char *desc) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, (tv->thread_group_name != NULL) ? tv->thread_group_name : tv->name, type, desc, &tv->sc_perf_pctx, SC_PERF_TYPE_Q_AVERAGE); return id; } /** * \brief Registers a counter, whose value holds the maximum of all the values * assigned to it. * * \param cname Name of the counter, to be registered * \param tv Pointer to the ThreadVars instance for which the counter would * be registered * \param type Datatype of this counter variable * \param desc Description of this counter * * \retval the counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfTVRegisterMaxCounter(char *cname, struct ThreadVars_ *tv, int type, char *desc) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, (tv->thread_group_name != NULL) ? tv->thread_group_name : tv->name, type, desc, &tv->sc_perf_pctx, SC_PERF_TYPE_Q_MAXIMUM); return id; } /** * \brief Registers a normal, unqualified counter * * \param cname Name of the counter, to be registered * \param tm_name Name of the engine module under which the counter has to be * registered * \param type Datatype of this counter variable * \param desc Description of this counter * \param pctx SCPerfContext corresponding to the tm_name key under which the * key has to be registered * * \retval id Counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfRegisterCounter(char *cname, char *tm_name, int type, char *desc, SCPerfContext *pctx) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, tm_name, type, desc, pctx, SC_PERF_TYPE_Q_NORMAL); return id; } /** * \brief Registers a counter, whose value holds the average of all the values * assigned to it. * * \param cname Name of the counter, to be registered * \param tm_name Name of the engine module under which the counter has to be * registered * \param type Datatype of this counter variable * \param desc Description of this counter * \param pctx SCPerfContext corresponding to the tm_name key under which the * key has to be registered * * \retval id Counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfRegisterAvgCounter(char *cname, char *tm_name, int type, char *desc, SCPerfContext *pctx) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, tm_name, type, desc, pctx, SC_PERF_TYPE_Q_AVERAGE); return id; } /** * \brief Registers a counter, whose value holds the maximum of all the values * assigned to it. * * \param cname Name of the counter, to be registered * \param tm_name Name of the engine module under which the counter has to be * registered * \param type Datatype of this counter variable * \param desc Description of this counter * \param pctx SCPerfContext corresponding to the tm_name key under which the * key has to be registered * * \retval id Counter id for the newly registered counter, or the already * present counter */ uint16_t SCPerfRegisterMaxCounter(char *cname, char *tm_name, int type, char *desc, SCPerfContext *pctx) { uint16_t id = SCPerfRegisterQualifiedCounter(cname, tm_name, type, desc, pctx, SC_PERF_TYPE_Q_MAXIMUM); return id; } /** * \brief Adds a TM to the clubbed TM table. Multiple instances of the same TM * are stacked together in a PCTMI container. * * \param tm_name Name of the tm to be added to the table * \param pctx SCPerfContext associated with the TM tm_name * * \retval 1 on success, 0 on failure */ int SCPerfAddToClubbedTMTable(char *tm_name, SCPerfContext *pctx) { if (sc_perf_op_ctx == NULL) { SCLogDebug("Counter module has been disabled"); return 0; } SCPerfClubTMInst *pctmi = NULL; SCPerfClubTMInst *prev = NULL; SCPerfClubTMInst *temp = NULL; SCPerfContext **hpctx = NULL; uint32_t u = 0; if (tm_name == NULL || pctx == NULL) { SCLogDebug("supplied argument(s) to SCPerfAddToClubbedTMTable NULL"); return 0; } SCMutexLock(&sc_perf_op_ctx->pctmi_lock); pctmi = sc_perf_op_ctx->pctmi; SCLogDebug("pctmi %p", pctmi); prev = pctmi; while (pctmi != NULL) { prev = pctmi; if (strcmp(tm_name, pctmi->tm_name) != 0) { pctmi = pctmi->next; continue; } break; } /* get me the bugger who wrote this junk of a code :P */ if (pctmi == NULL) { if ( (temp = SCMalloc(sizeof(SCPerfClubTMInst))) == NULL) { SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 0; } memset(temp, 0, sizeof(SCPerfClubTMInst)); temp->size = 1; temp->head = SCMalloc(sizeof(SCPerfContext **)); if (temp->head == NULL) { SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 0; } temp->head[0] = pctx; temp->tm_name = SCStrdup(tm_name); if (unlikely(temp->tm_name == NULL)) { SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 0; } if (prev == NULL) sc_perf_op_ctx->pctmi = temp; else prev->next = temp; SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 1; } /* see if the pctx is already part of this pctmi */ hpctx = pctmi->head; for (u = 0; u < pctmi->size; u++) { if (hpctx[u] != pctx) continue; SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 1; } pctmi->head = SCRealloc(pctmi->head, (pctmi->size + 1) * sizeof(SCPerfContext **)); if (pctmi->head == NULL) { SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 0; } hpctx = pctmi->head; hpctx[pctmi->size] = pctx; for (u = pctmi->size - 1; u > 0; u--) { if (pctx->curr_id <= hpctx[u]->curr_id) { hpctx[u + 1] = hpctx[u]; hpctx[u] = pctx; continue; } break; } pctmi->size++; SCMutexUnlock(&sc_perf_op_ctx->pctmi_lock); return 1; } /** * \brief Returns a counter array for counters in this id range(s_id - e_id) * * \param s_id Counter id of the first counter to be added to the array * \param e_id Counter id of the last counter to be added to the array * \param pctx Pointer to the tv's SCPerfContext * * \retval a counter-array in this(s_id-e_id) range for this TM instance */ SCPerfCounterArray *SCPerfGetCounterArrayRange(uint16_t s_id, uint16_t e_id, SCPerfContext *pctx) { SCPerfCounter *pc = NULL; SCPerfCounterArray *pca = NULL; uint32_t i = 0; if (pctx == NULL) { SCLogDebug("pctx is NULL"); return NULL; } if (s_id < 1 || e_id < 1 || s_id > e_id) { SCLogDebug("error with the counter ids"); return NULL; } if (e_id > pctx->curr_id) { SCLogDebug("end id is greater than the max id for this tv"); return NULL; } if ( (pca = SCMalloc(sizeof(SCPerfCounterArray))) == NULL) return NULL; memset(pca, 0, sizeof(SCPerfCounterArray)); if ( (pca->head = SCMalloc(sizeof(SCPCAElem) * (e_id - s_id + 2))) == NULL) return NULL; memset(pca->head, 0, sizeof(SCPCAElem) * (e_id - s_id + 2)); pc = pctx->head; while (pc->id != s_id) pc = pc->next; i = 1; while ((pc != NULL) && (pc->id <= e_id)) { pca->head[i].pc = pc; pca->head[i].id = pc->id; pc = pc->next; i++; } pca->size = i - 1; return pca; } /** * \brief Returns a counter array for all counters registered for this tm * instance * * \param pctx Pointer to the tv's SCPerfContext * * \retval pca Pointer to a counter-array for all counter of this tm instance * on success; NULL on failure */ SCPerfCounterArray *SCPerfGetAllCountersArray(SCPerfContext *pctx) { SCPerfCounterArray *pca = ((pctx)? SCPerfGetCounterArrayRange(1, pctx->curr_id, pctx): NULL); return pca; } /** * \brief Syncs the counter array with the global counter variables * * \param pca Pointer to the SCPerfCounterArray * \param pctx Pointer the the tv's SCPerfContext * \param reset_lc Indicates whether the local counter has to be reset or not * * \retval 0 on success * \retval -1 on error */ int SCPerfUpdateCounterArray(SCPerfCounterArray *pca, SCPerfContext *pctx) { SCPerfCounter *pc = NULL; SCPCAElem *pcae = NULL; uint32_t i = 0; if (pca == NULL || pctx == NULL) { SCLogDebug("pca or pctx is NULL inside SCPerfUpdateCounterArray"); return -1; } pcae = pca->head; SCMutexLock(&pctx->m); pc = pctx->head; for (i = 1; i <= pca->size; i++) { while (pc != NULL) { if (pc->id != pcae[i].id) { pc = pc->next; continue; } SCPerfCopyCounterValue(&pcae[i]); pc = pc->next; break; } } SCMutexUnlock(&pctx->m); pctx->perf_flag = 0; return 1; } /* * \brief Get the value of the local copy of the counter that hold this id. * * \param id The counter id. * \param pca Pointer to the SCPerfCounterArray. * * \retval 0 on success. * \retval -1 on error. */ double SCPerfGetLocalCounterValue(uint16_t id, SCPerfCounterArray *pca) { #ifdef DEBUG BUG_ON (pca == NULL); BUG_ON ((id < 1) || (id > pca->size)); #endif return pca->head[id].ui64_cnt; } /** * \brief The output interface dispatcher for the counter api */ void SCPerfOutputCounters() { switch (sc_perf_op_ctx->iface) { case SC_PERF_IFACE_FILE: SCPerfOutputCounterFileIface(); break; case SC_PERF_IFACE_CONSOLE: /* yet to be implemented */ break; case SC_PERF_IFACE_SYSLOG: /* yet to be implemented */ break; } return; } /** * \brief Releases the resources alloted by the Perf Counter API */ void SCPerfReleaseResources() { SCPerfReleaseOPCtx(); return; } /** * \brief Releases a list of perf counters * * \param head Pointer to the head of the list of perf counters that have to * be freed */ void SCPerfReleasePerfCounterS(SCPerfCounter *head) { SCPerfCounter *pc = NULL; while (head != NULL) { pc = head; head = head->next; SCPerfReleaseCounter(pc); } return; } /** * \brief Releases the SCPerfCounterArray allocated by the user, for storing and * updating local counter values * * \param pca Pointer to the SCPerfCounterArray */ void SCPerfReleasePCA(SCPerfCounterArray *pca) { if (pca != NULL) { if (pca->head != NULL) SCFree(pca->head); SCFree(pca); } return; } /*----------------------------------Unit_Tests--------------------------------*/ #ifdef UNITTESTS static int SCPerfTestCounterReg01() { SCPerfContext pctx; memset(&pctx, 0, sizeof(SCPerfContext)); return SCPerfRegisterCounter("t1", "c1", 5, NULL, &pctx); } static int SCPerfTestCounterReg02() { SCPerfContext pctx; memset(&pctx, 0, sizeof(SCPerfContext)); return SCPerfRegisterCounter(NULL, NULL, SC_PERF_TYPE_UINT64, NULL, &pctx); } static int SCPerfTestCounterReg03() { SCPerfContext pctx; int result; memset(&pctx, 0, sizeof(SCPerfContext)); result = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &pctx); SCPerfReleasePerfCounterS(pctx.head); return result; } static int SCPerfTestCounterReg04() { SCPerfContext pctx; int result; memset(&pctx, 0, sizeof(SCPerfContext)); SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &pctx); SCPerfRegisterCounter("t2", "c2", SC_PERF_TYPE_UINT64, NULL, &pctx); SCPerfRegisterCounter("t3", "c3", SC_PERF_TYPE_UINT64, NULL, &pctx); result = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &pctx); SCPerfReleasePerfCounterS(pctx.head); return result; } static int SCPerfTestGetCntArray05() { ThreadVars tv; int id; memset(&tv, 0, sizeof(ThreadVars)); id = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); if (id != 1) { printf("id %d: ", id); return 0; } tv.sc_perf_pca = SCPerfGetAllCountersArray(NULL); return (!tv.sc_perf_pca)?1:0; } static int SCPerfTestGetCntArray06() { ThreadVars tv; int id; int result; memset(&tv, 0, sizeof(ThreadVars)); id = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); if (id != 1) return 0; tv.sc_perf_pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); result = (tv.sc_perf_pca)?1:0; SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(tv.sc_perf_pca); return result; } static int SCPerfTestCntArraySize07() { ThreadVars tv; SCPerfCounterArray *pca = NULL; int result; memset(&tv, 0, sizeof(ThreadVars)); //pca = (SCPerfCounterArray *)&tv.sc_perf_pca; SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); SCPerfRegisterCounter("t2", "c2", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); SCPerfCounterIncr(1, pca); SCPerfCounterIncr(2, pca); result = pca->size; SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(pca); return result; } static int SCPerfTestUpdateCounter08() { ThreadVars tv; SCPerfCounterArray *pca = NULL; int id; int result; memset(&tv, 0, sizeof(ThreadVars)); id = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); SCPerfCounterIncr(id, pca); SCPerfCounterAddUI64(id, pca, 100); result = pca->head[id].ui64_cnt; SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(pca); return result; } static int SCPerfTestUpdateCounter09() { ThreadVars tv; SCPerfCounterArray *pca = NULL; uint16_t id1, id2; int result; memset(&tv, 0, sizeof(ThreadVars)); id1 = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); SCPerfRegisterCounter("t2", "c2", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); SCPerfRegisterCounter("t3", "c3", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); SCPerfRegisterCounter("t4", "c4", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id2 = SCPerfRegisterCounter("t5", "c5", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); SCPerfCounterIncr(id2, pca); SCPerfCounterAddUI64(id2, pca, 100); result = (pca->head[id1].ui64_cnt == 0) && (pca->head[id2].ui64_cnt == 101); SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(pca); return result; } static int SCPerfTestUpdateGlobalCounter10() { ThreadVars tv; SCPerfCounterArray *pca = NULL; int result = 1; uint16_t id1, id2, id3; memset(&tv, 0, sizeof(ThreadVars)); id1 = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id2 = SCPerfRegisterCounter("t2", "c2", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id3 = SCPerfRegisterCounter("t3", "c3", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); SCPerfCounterIncr(id1, pca); SCPerfCounterAddUI64(id2, pca, 100); SCPerfCounterIncr(id3, pca); SCPerfCounterAddUI64(id3, pca, 100); SCPerfUpdateCounterArray(pca, &tv.sc_perf_pctx); result = (1 == tv.sc_perf_pctx.head->value); result &= (100 == tv.sc_perf_pctx.head->next->value); result &= (101 == tv.sc_perf_pctx.head->next->next->value); SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(pca); return result; } static int SCPerfTestCounterValues11() { ThreadVars tv; SCPerfCounterArray *pca = NULL; int result = 1; uint16_t id1, id2, id3, id4; memset(&tv, 0, sizeof(ThreadVars)); id1 = SCPerfRegisterCounter("t1", "c1", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id2 = SCPerfRegisterCounter("t2", "c2", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id3 = SCPerfRegisterCounter("t3", "c3", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); id4 = SCPerfRegisterCounter("t4", "c4", SC_PERF_TYPE_UINT64, NULL, &tv.sc_perf_pctx); pca = SCPerfGetAllCountersArray(&tv.sc_perf_pctx); SCPerfCounterIncr(id1, pca); SCPerfCounterAddUI64(id2, pca, 256); SCPerfCounterAddUI64(id3, pca, 257); SCPerfCounterAddUI64(id4, pca, 16843024); SCPerfUpdateCounterArray(pca, &tv.sc_perf_pctx); result &= (1 == tv.sc_perf_pctx.head->value); result &= (256 == tv.sc_perf_pctx.head->next->value); result &= (257 == tv.sc_perf_pctx.head->next->next->value); result &= (16843024 == tv.sc_perf_pctx.head->next->next->next->value); SCPerfReleasePerfCounterS(tv.sc_perf_pctx.head); SCPerfReleasePCA(pca); return result; } #endif void SCPerfRegisterTests() { #ifdef UNITTESTS UtRegisterTest("SCPerfTestCounterReg01", SCPerfTestCounterReg01, 0); UtRegisterTest("SCPerfTestCounterReg02", SCPerfTestCounterReg02, 0); UtRegisterTest("SCPerfTestCounterReg03", SCPerfTestCounterReg03, 1); UtRegisterTest("SCPerfTestCounterReg04", SCPerfTestCounterReg04, 1); UtRegisterTest("SCPerfTestGetCntArray05", SCPerfTestGetCntArray05, 1); UtRegisterTest("SCPerfTestGetCntArray06", SCPerfTestGetCntArray06, 1); UtRegisterTest("SCPerfTestCntArraySize07", SCPerfTestCntArraySize07, 2); UtRegisterTest("SCPerfTestUpdateCounter08", SCPerfTestUpdateCounter08, 101); UtRegisterTest("SCPerfTestUpdateCounter09", SCPerfTestUpdateCounter09, 1); UtRegisterTest("SCPerfTestUpdateGlobalCounter10", SCPerfTestUpdateGlobalCounter10, 1); UtRegisterTest("SCPerfTestCounterValues11", SCPerfTestCounterValues11, 1); #endif }