Both the drop and tls logs are currently not designed to have multiple
instances running. So until that is changed, error out if more than one
instance is started.
To support the 'eve-log' idea, we need to be able to force all log
modules to be enabled by the master eve-log module, and need to be
able to make all logs go into a single file. This didn't fit the
API so far, so added the sub-module concept.
A sub-module is a regular module, that registers itself as a sub-
module of another module:
OutputRegisterTxSubModule("eve-log", "JsonHttpLog", "http",
OutputHttpLogInitSub, ALPROTO_HTTP, JsonHttpLogger);
The first argument is the name of the parent. The 4th argument is
the OutputCtx init function. It differs slightly from the non-sub
one. The different is that in addition to it's ConfNode, it gets
the OutputCtx from the parent. This way it can set the parents
LogFileCtx in it's own OutputCtx.
The runmode setup code will take care of all the extra setup. It's
possible to register a module both as a normal module and as a sub-
module, which can operate at the same time.
Only the TxLogger API is handled in this patch, the rest will be
updated later.
A new logger API for registering file storage handlers. Where the
FileLog handler is called once per file, this handler will be called
for each data chunk so that storing the entire file is possible.
The logger call in the API is as follows:
typedef int (*FiledataLogger)(ThreadVars *, void *thread_data,
const Packet *, const File *, const FileData *, uint8_t flags);
All data is const, thus should be read only. The final flags field
is used to indicate to the caller that the file is new, or if it's
being closed.
Files use an internal unique id 'file_id' which can be used by the
loggers to create unique file names. This id can use the 'waldo'
feature of the log-filestore module. This patch moves that waldo
loading and storing logic to this API's implementation. A new
configuration directive 'file-store-waldo: <filename>' is added,
but the existing waldo settings will also continue to work.
This patch introduces a new logging API for logging extracted file info.
It allows for registration of a callback that is called once per file:
when it's considered 'closed'.
Users of this API register their Log Function through:
OutputRegisterFileModule()
The API uses a magic settings globally. This might be changed later.
This patch introduces a new API for logging transactions from
tx-aware app layer protocols. It runs all the registered loggers
from a single thread module. This thread module takes care of the
transaction handling and flow locking. The logger just gets a
transaction to log out.
All loggers for a protocol will be run at the same time, so there
will not be any timing differences.
Loggers will no longer act as Thread Modules in the strictest sense.
The Func is NULL, and SetupOuputs no longer attaches them to the
thread module chain individually. Instead, after registering through
OutputRegisterTxModule, the setup data is used in the single logging
module.
The logger (LogFunc) is called for each transaction once, at the end
of the transaction.
This patch introduces a new API for outputs that log based on the
packet, such as alert outputs. In converts fast-log to the new API.
The API gets rid of the concept of each logger being a thread module,
but instead there is one thread module that runs all packet loggers.
Through the registration function OutputRegisterPacketModule a log
module can register itself to be considered for each packet.
Each logger registers itself to this new API with 2 functions and the
OutputCtx object that was already used in the old implementation.
The function pointers are:
LogFunc: the log function
ConditionFunc: this function is called before the LogFunc and only
if this returns TRUE the LogFunc is called.
For a simple alert logger like fast-log, the condition function will
simply return TRUE if p->alerts.cnt > 0.
util-logopenfile.[ch] implements the abstraction; util-error.[ch]
modified to include a socket-specific error code; output.h adds a
default filetype for logs ("regular").
Per packet profiling uses tick based accounting. It has 2 outputs, a summary
and a csv file that contains per packet stats.
Stats per packet include:
1) total ticks spent
2) ticks spent per individual thread module
3) "threading overhead" which is simply calculated by subtracting (2) of (1).
A number of changes were made to integrate the new code in a clean way:
a number of generic enums are now placed in tm-threads-common.h so we can
include them from any part of the engine.
Code depends on --enable-profiling just like the rule profiling code.
New yaml parameters:
profiling:
# packet profiling
packets:
# Profiling can be disabled here, but it will still have a
# performance impact if compiled in.
enabled: yes
filename: packet_stats.log
append: yes
# per packet csv output
csv:
# Output can be disabled here, but it will still have a
# performance impact if compiled in.
enabled: no
filename: packet_stats.csv
Example output of summary stats:
IP ver Proto cnt min max avg
------ ----- ------ ------ ---------- -------
IPv4 6 19436 11448 5404365 32993
IPv4 256 4 11511 49968 30575
Per Thread module stats:
Thread Module IP ver Proto cnt min max avg
------------------------ ------ ----- ------ ------ ---------- -------
TMM_DECODEPCAPFILE IPv4 6 19434 1242 47889 1770
TMM_DETECT IPv4 6 19436 1107 137241 1504
TMM_ALERTFASTLOG IPv4 6 19436 90 1323 155
TMM_ALERTUNIFIED2ALERT IPv4 6 19436 108 1359 138
TMM_ALERTDEBUGLOG IPv4 6 19436 90 1134 154
TMM_LOGHTTPLOG IPv4 6 19436 414 5392089 7944
TMM_STREAMTCP IPv4 6 19434 828 1299159 19438
The proto 256 is a counter for handling of pseudo/tunnel packets.
Example output of csv:
pcap_cnt,ipver,ipproto,total,TMM_DECODENFQ,TMM_VERDICTNFQ,TMM_RECEIVENFQ,TMM_RECEIVEPCAP,TMM_RECEIVEPCAPFILE,TMM_DECODEPCAP,TMM_DECODEPCAPFILE,TMM_RECEIVEPFRING,TMM_DECODEPFRING,TMM_DETECT,TMM_ALERTFASTLOG,TMM_ALERTFASTLOG4,TMM_ALERTFASTLOG6,TMM_ALERTUNIFIEDLOG,TMM_ALERTUNIFIEDALERT,TMM_ALERTUNIFIED2ALERT,TMM_ALERTPRELUDE,TMM_ALERTDEBUGLOG,TMM_ALERTSYSLOG,TMM_LOGDROPLOG,TMM_ALERTSYSLOG4,TMM_ALERTSYSLOG6,TMM_RESPONDREJECT,TMM_LOGHTTPLOG,TMM_LOGHTTPLOG4,TMM_LOGHTTPLOG6,TMM_PCAPLOG,TMM_STREAMTCP,TMM_DECODEIPFW,TMM_VERDICTIPFW,TMM_RECEIVEIPFW,TMM_RECEIVEERFFILE,TMM_DECODEERFFILE,TMM_RECEIVEERFDAG,TMM_DECODEERFDAG,threading
1,4,6,172008,0,0,0,0,0,0,47889,0,0,48582,1323,0,0,0,0,1359,0,1134,0,0,0,0,0,8028,0,0,0,49356,0,0,0,0,0,0,0,14337
First line of the file contains labels.
2 example gnuplot scripts added to plot the data.