Initial version of the 'FlowWorker' thread module. This module
combines Flow handling, TCP handling, App layer handling and
Detection in a single module. It does all flow related processing
under a single flow lock.
To speed up startup with many tenants, tenant loading will be parallelized.
As no tempary threads should be used for these memory allocation heavy
tasks, this patch adds new type of 'command' thread that can be used to
load and reload tenants.
This patch hardcodes the number of loaders to 4. Future work will make it
dynamic.
The loader thread essentially sleeps constantly. When a tasks is sent to
it, it will wake up and execute it.
An design error was made when doing the TLS storage module which
has been made dependant of the TLS logging. At the time there was
only one TLS logging module but there is now two different ones.
By putting the TLS store module in a separate module, we can now
use EVE output and TLS store at the same time.
Convert regular 'stats.log' output to this new API.
In addition to the current stats value, also give the last value. This
makes it easy to display the difference.
This patch adds a new Log API for streaming data such as TCP reassembled
data and HTTP body data. It could also replace Filedata API.
Each time a new chunk of data is available, the callback will be called.
Use new management API to run the flow manager.
Support multiple flow managers, where each of them works with it's
own part of the flow hash.
Make number of threads configurable:
flow:
memcap: 64mb
hash-size: 65536
prealloc: 10000
emergency-recovery: 30
managers: 2
This sets up 2 flow managers.
Handle misc tasks only in instance 1: Handle defrag hash timeout
handing, host hash timeout handling and flow spare queue updating
only from the first instance.
When running on a TILEncore-Gx PCIe card, setting the filetype of fast.log
to pcie, will open a connection over PCIe to a host application caleld
tile-pcie-logd, that receives the alert strings and writes them to a file
on the host. The file name to open is also passed over the PCIe link.
This allows running Suricata on the TILEncore-Gx PCIe card, but have the
alerts logged to the host system's file system efficiently. The PCIe API that
is used is the Tilera Packet Queue (PQ) API which can access PCIe from User
Space, thus avoiding system calls.
Created util-logopenfile-tile.c and util-logopen-tile.h for the TILE
specific PCIe logging functionality.
Using Write() and Close() function pointers in LogFileCtx, which
default to standard write and close for files and sockets, but are
changed to PCIe write and close functions when a PCIe channel is
openned for logging.
Moved Logging contex out of tm-modules.h into util-logopenfile.h,
where it makes more sense. This required including util-logopenfile.h
into a couple of alert-*.c files, which previously were getting the
definitions from tm-modules.h.
The source and Makefile for tile-pcie-logd are added in contrib/tile-pcie-logd.
By default, the file name for fast.log specified in suricata.yaml is used as
the filename on the host. An optional argument to tile-pcie-logd, --prefix=,
can be added to prepend the supplied file path. For example, is the file
in suricata.yaml is specified as "/var/log/fast.log" and --prefix="/tmp",
then the file will be written to "/tmp/var/log/fast.log".
Check for TILERA_ROOT environment variable before building tile_pcie_logd
Building tile_pcie_logd on x86 requires the Tilera MDE for its PCIe libraries
and API header files. Configure now checs for TILERA_ROOT before enabling
builing tile_pcie_logd in contrib/tile_pcie_logd
A new logger API for registering file storage handlers. Where the
FileLog handler is called once per file, this handler will be called
for each data chunk so that storing the entire file is possible.
The logger call in the API is as follows:
typedef int (*FiledataLogger)(ThreadVars *, void *thread_data,
const Packet *, const File *, const FileData *, uint8_t flags);
All data is const, thus should be read only. The final flags field
is used to indicate to the caller that the file is new, or if it's
being closed.
Files use an internal unique id 'file_id' which can be used by the
loggers to create unique file names. This id can use the 'waldo'
feature of the log-filestore module. This patch moves that waldo
loading and storing logic to this API's implementation. A new
configuration directive 'file-store-waldo: <filename>' is added,
but the existing waldo settings will also continue to work.
This patch introduces a new logging API for logging extracted file info.
It allows for registration of a callback that is called once per file:
when it's considered 'closed'.
Users of this API register their Log Function through:
OutputRegisterFileModule()
The API uses a magic settings globally. This might be changed later.
This patch introduces a new API for logging transactions from
tx-aware app layer protocols. It runs all the registered loggers
from a single thread module. This thread module takes care of the
transaction handling and flow locking. The logger just gets a
transaction to log out.
All loggers for a protocol will be run at the same time, so there
will not be any timing differences.
Loggers will no longer act as Thread Modules in the strictest sense.
The Func is NULL, and SetupOuputs no longer attaches them to the
thread module chain individually. Instead, after registering through
OutputRegisterTxModule, the setup data is used in the single logging
module.
The logger (LogFunc) is called for each transaction once, at the end
of the transaction.
This patch introduces a new API for outputs that log based on the
packet, such as alert outputs. In converts fast-log to the new API.
The API gets rid of the concept of each logger being a thread module,
but instead there is one thread module that runs all packet loggers.
Through the registration function OutputRegisterPacketModule a log
module can register itself to be considered for each packet.
Each logger registers itself to this new API with 2 functions and the
OutputCtx object that was already used in the old implementation.
The function pointers are:
LogFunc: the log function
ConditionFunc: this function is called before the LogFunc and only
if this returns TRUE the LogFunc is called.
For a simple alert logger like fast-log, the condition function will
simply return TRUE if p->alerts.cnt > 0.