Previously each 'TmSlot' had it's own packet queue that was passed
to the registered SlotFunc as an argument. This was used mostly for
tunnel packets by the decoders and by defrag.
This patch removes that in favor of a single queue in the ThreadVars:
decode_pq. This is the non-locked version of the queue as this is
only a temporary store for handling packets within a thread.
This patch removes the PacketQueue pointer argument from the API.
The new queue can be accessed directly through the ThreadVars
pointer.
On MinGW the result of ntohl needs to be casted to uint32_t and
the result of ntohs to uint16_t. To avoid doing this everywhere
add SCNtohl and SCNtohs macros.
Set flags by default:
-Wmissing-prototypes
-Wmissing-declarations
-Wstrict-prototypes
-Wwrite-strings
-Wcast-align
-Wbad-function-cast
-Wformat-security
-Wno-format-nonliteral
-Wmissing-format-attribute
-funsigned-char
Fix minor compiler warnings for these new flags on gcc and clang.
Issue:
https://redmine.openinfosecfoundation.org/issues/2041
One approach to fixing this issue to just validate the
checksum instead of regenerating it and comparing it. This
method is used in some kernels and other network tools.
When validating, the current checksum is passed in as an
initial argument which will cause the final checksum to be 0
if OK. If generating a checksum, 0 is passed and the result
is the generated checksum.
The new Hyperscan 4.4 API provides a function to check for SSSE3
presence at runtime. This allows us to fall back to non-Hyperscan
matchers on systems without SSSE3 even when the suricata executable
is built with Hyperscan support. Addresses Redmine issue #2010.
Signed-off-by: Sascha Steinbiss <sascha@steinbiss.name>
Tested-by: Arturo Borrero Gonzalez <arturo@debian.org>
Calculate the length of the ICMPv6 packet from decoded information
instead of off the wire length. This will provide the correct
length if trailing data like an FCS is present.
Fixes issue:
https://redmine.openinfosecfoundation.org/issues/1849
The Match functions don't need a pointer to the SigMatch object, just the
context pointer contained inside, so pass the Context to the Match function
rather than the SigMatch object. This allows for further optimization.
Change SigMatch->ctx to have type SigMatchCtx* rather than void* for better
type checking. This requires adding type casts when using or assigning it.
The SigMatch contex should not be changed by the Match() funciton, so pass it
as a const SigMatchCtx*.
The uint8_t *pkt in the Packet structure always points to the memory
immediately following the Packet structure. It is better to simply
calculate that value every time than store the 8 byte pointer.
Keep a separate checksum for IPV4, since a packet can have both an IPV4
checksum and a TCPV4 checksum, or IPV4 and UDPV4 checksum.
This will allow future sharing of more values.
Use PACKET_RESET_CHECKSUMS() in Unit Tests in place of setting the
individual checksum values.
Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the
util-mpm-ac.c code base. The primary optimizations are:
1) Matching function used Tilera specific instructions.
2) Alphabet compression to reduce delta table size to increase cache
utilization and performance.
The basic observation is that not all 256 ASCII characters are used by
the set of multiple patterns in a group for which a DFA is
created. The first reason is that Suricata's pattern matching is
case-insensitive, so all uppercase characters are converted to
lowercase, leaving a hole of 26 characters in the
alphabet. Previously, this hole was simply left in the middle of the
alphabet and thus in the generated Next State (delta) tables.
A new, smaller, alphabet is created using a translation table of 256
bytes per mpm group. Previously, there was one global translation
table for converting upper case to lowercase.
Additional, unused characters are found by creating a histogram of all
the characters in all the patterns. Then all the characters with zero
counts are mapped to one character (0) in the new alphabet. Since
These characters appear in no pattern, they can all be mapped to a
single character and still result in the same matches being
found. Zero was chosen for the value in the new alphabet since this
"character" is more likely to appear in the input. The unused
character always results in the next state being state zero, but that
fact is not currently used by the code, since special casing takes
additional instructions.
The characters that do appear in some pattern are mapped to
consecutive characters in the new alphabet, starting at 1. This
results in a dense packing of next state values in the delta tables
and additionally can allow for a smaller number of columns in that
table, thus using less memory and better packing into the cache. The
size of the new alphabet is the number of used characters plus 1 for
the unused catch-all character.
The alphabet size is rounded up to the next larger power-of-2 so that
multiplication by the alphabet size can be done with a shift. It
might be possible to use a multiply instruction, so that the exact
alphabet size could be used, which would further reduce the size of
the delta tables, increase cache density and not require the
specialized search functions. The multiply would likely add 1 cycle to
the inner search loop.
Since the multiply by alphabet-size is cleverly merged with a mask
instruction (in the SINDEX macro), specialized versions of the
SCACSearch function are generated for alphabet sizes 256, 128, 64, 32
and 16. This is done by including the file util-mpm-ac-small.c
multiple times with a redefined SINDEX macro. A function pointer is
then stored in the mpm context for the search function. For alpha bit
sizes of 8 or smaller, the number of states usually small, so the DFA
is already very small, so there is little difference using the 16
state search function.
The SCACSearch function is also specialized by the size of the value
stored in the next state (delta) tables, either 16-bits or 32-bits.
This removes a conditional inside the Search function. That
conditional is only called once, but doesn't hurt to remove
it. 16-bits are used for up to 32K states, with the sign bit set for
states with matches.
Future optimization:
The state-has-match values is only needed per state, not per next
state, so checking the next-state sign bit could be replaced with
reading a different value, at the cost of an additional load, but
increasing the 16-bit next state span to 64K.
Since the order of the characters in the new alphabet doesn't matter,
the new alphabet could be sorted by the frequency of the characters in
the expected input stream for that multi-pattern matcher. This would
group more frequent characters into the same cache lines, thus
increasing the probability of reusing a cache-line.
All the next state values for each state live in their own set of
cache-lines. With power-of-two sizes alphabets, these don't overlap.
So either 32 or 16 character's next states are loaded in each cache
line load. If the alphabet size is not an exact power-of-2, then the
last cache-line is not completely full and up to 31*2 bytes of that
line could be wasted per state.
The next state table could be transposed, so that all the next states
for a specific character are stored sequentially, this could be better
if some characters, for example the unused character, are much more
frequent.
When handling error case on SCMallog, SCCalloc or SCStrdup
we are in an unlikely case. This patch adds the unlikely()
expression to indicate this to gcc.
This patch has been obtained via coccinelle. The transformation
is the following:
@istested@
identifier x;
statement S1;
identifier func =~ "(SCMalloc|SCStrdup|SCCalloc)";
@@
x = func(...)
... when != x
- if (x == NULL) S1
+ if (unlikely(x == NULL)) S1
This patch modify checksum match to not alert on packet with
incomplete checksum. They will be checksummed later and thus
can be considered as valid one.
This patch fixes a logic error in the checksum matches. In
case the protocol is not the one tested, the test must return
0 and not 1 (test matched).
Signed-off-by: Eric Leblond <eric@regit.org>