Decode Modbus request and response messages, and extracts
MODBUS Application Protocol header and the code function.
In case of read/write function, extracts message contents
(read/write address, quantity, count, data to write).
Links request and response messages in a transaction according to
Transaction Identifier (transaction management based on DNS source code).
MODBUS Messaging on TCP/IP Implementation Guide V1.0b
(http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)
MODBUS Application Protocol Specification V1.1b3
(http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)
Based on DNS source code.
Signed-off-by: David DIALLO <diallo@et.esia.fr>
StreamTcpSetDisableRawReassemblyFlag() has the same effect as
AppLayerParserTriggerRawStreamReassembly in that it will force the
raw reassembly to flush out asap. So it is redundant to call both.
Implement StreamTcpSetDisableRawReassemblyFlag() which stops raw
reassembly for _NEW_ segments in a stream direction.
It is used only by TLS/SSL now, to flag the streams as encrypted.
Existing segments will still be reassembled and inspected, while
new segments won't be. This allows for pattern based inspection
of the TLS handshake.
Like is the case with completely disabled 'raw' reassembly, the
logic is that the segments are flagged as completed for 'raw' right
away. So they are not considered in raw reassembly anymore.
As no new segments will be considered, the chunk limit check will
return true on the next call.
AppLayerParserProtocolIsTxEventAware would check if a proto is tx
event aware by checking if it had registered a StateHasEvents function.
However, this is an optimization function. This patch changes it to
use the StateGetEvents function instead, which is a better indicator.
The new API call:
int AppLayerParserProtocolHasLogger(uint8_t ipproto,
AppProto alproto)
Returns TRUE if a logger is registered on the ip/alproto pair, and
FALSE otherwise.
If a protocol parser is active without a logger when detection is
disabled, the transaction handling logic would fail. Now it will
return the proper tx id so we can clean up the complete transactions.
When running w/o detect, TX cleanup handling needs to ignore the
inspect_id as it's only updated by detect.
This patch introduces a new ActiveTx handler for logging only:
AppLayerTransactionGetActiveLogOnly
If --disable-detection is passed on the commandline, this function
is registered.
Move app layer event handling into app-layer-event.[ch].
Convert 'Set' macro's to functions.
Get rid of duplication in Set and SetRaw. Set now calls SetRaw.
Fix potentential int overflow condition in the event storage.
Update callers.
In preparation of a patchset that will allow for disabling the detect
module, this patch introduces a way to register a function for getting
the lowest active tx id. This is used by the app layer for cleaning up
transactions that already fully inspected, and by the flow timeout code
to determine if a flow is fully inspected and logged at timeout.
The registration function RegisterAppLayerGetActiveTxIdFunc allows for
registration of a custom function of type:
uint64_t (*GetActiveTxIdFunc)(Flow *f, uint8_t flags);
If no function is called, AppLayerTransactionGetActiveDetectLog is used,
which implements the existing behaviour of considering both the
inspect_id's and the log_id.
In AppLayerTransactionsCleanup instead of figuring out 'done' tx id's
itself, now call AppLayerTransactionGetActive for both directions to
figure out the completed TX id's.
For AppLayerThreadCtx, AppLayerParserState, AppLayerParserThreadCtx
and AppLayerProtoDetectThreadCtx, use opaque pointers instead of
void pointers.
AppLayerParserState is declared in flow.h as it's part of the Flow
structure.
AppLayerThreadCtx is declared in decode.h, as it's part of the
DecodeThreadVars structure.
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
of the archaic features we use in the app layer. We will reintroduce this
parser shortly. Also do note that keywords that rely on the ssh parser
would now be disabled.
Flow timeout code worked by luck when checking if a flow still needed
reassembly for app layer inspection or logging. It would check for a
part of raw reassembly (smsg list) to determine if detection was
needed. In this case it would also process app layer cleanup,
including logging.
Introduced AppLayerTransactionGetActive which returns the lowest tx_id
in a direction that still needs some work.
FlowForceReassemblyNeedReassmbly now uses it to determine if the
applayer still needs work.
Converted FlowForceReassemblyForHash to use the checking function
FlowForceReassemblyNeedReassmbly as well, so that checking if a flow
needs work is now unified.
When logging is disabled, the app layer would still be flagged
as logging. This caused transactions not to be freed until the
end of the flow as the logged tx id would never increment.
This fix postpones the setting of the app layer parser "logger"
flag to the point where we know the logger is enabled.
This patch is a result of applying the following coccinelle
transformation to suricata sources:
@istested@
identifier x;
statement S1;
identifier func =~ "(SCMalloc|SCStrdup|SCCalloc|SCMallocAligned|SCRealloc)";
@@
x = func(...)
... when != x
- if (x == NULL) S1
+ if (unlikely(x == NULL)) S1
We don't support jabber protocol detection atm. Disable the code check
inside suricata to check if jabber protocol detection is enabled in the
yaml file.
Also updated an error log message for app layer.
app-layer-parser.c: In function ‘AppLayerPPTestData’:
app-layer-parser.c:2525:9: error: variable ‘dir’ set but not used [-Werror=unused-but-set-variable]
int dir = 0;
^
Removed a flag parameter introuced earlier to indicate the data
that is first acceptable by the parser. We now use a differently
named parameter to carry out the same activity.