Optional callback a parser can register for applying configuration
to the 'transaction'. Most parsers have a bidirectional tx. For those
parsers that have different types of transaction handling, this new
callback can be used to properly apply the config.
AppLayerTxData is a structure each tx should include that will contain
the common fields the engine needs for tracking logging, detection and
possibly other things.
AppLayerTxConfig will be used by the detection engine to configure
the transaction.
This patch simplifies the return codes app-layer parsers use,
in preparation of a patch set for overhauling the return type.
Introduce two macros:
APP_LAYER_OK (value 0)
APP_LAYER_ERROR (value -1)
Update all parsers to use this.
rustc 1.36 introduced:
error: variable does not need to be mutable
--> src/dhcp/parser.rs:202:17
|
202 | let mut malformed_options = false;
| ----^^^^^^^^^^^^^^^^^
| |
| help: remove this `mut`
|
note: lint level defined here
--> src/lib.rs:18:38
|
18 | #![cfg_attr(feature = "strict", deny(warnings))]
| ^^^^^^^^
= note: #[deny(unused_mut)] implied by #[deny(warnings)]
error: aborting due to previous error
error: Could not compile `suricata`.
Ticket #3072.
This changeset makes changes to the TX logging path. Since the txn
is passed to the TX logger, the TX can be used directly instead of
through the TX id.
When Suricata picks up a flow it assumes the first packet is
toserver. In a perfect world without packet loss and where all
sessions neatly start after Suricata itself started, this would be
true. However, in reality we have to account for packet loss and
Suricata starting to get packets for flows already active be for
Suricata is (re)started.
The protocol records on the wire would often be able to tell us more
though. For example in SMB1 and SMB2 records there is a flag that
indicates whether the record is a request or a response. This patch
is enabling the procotol detection engine to utilize this information
to 'reverse' the flow.
There are three ways in which this is supported in this patch:
1. patterns for detection are registered per direction. If the proto
was not recognized in the traffic direction, and midstream is
enabled, the pattern set for the opposing direction is also
evaluated. If that matches, the flow is considered to be in the
wrong direction and is reversed.
2. probing parsers now have a way to feed back their understanding
of the flow direction. They are now passed the direction as
Suricata sees the traffic when calling the probing parsers. The
parser can then see if its own observation matches that, and
pass back it's own view to the caller.
3. a new pattern + probing parser set up: probing parsers can now
be registered with a pattern, so that when the pattern matches
the probing parser is called as well. The probing parser can
then provide the protocol detection engine with the direction
of the traffic.
The process of reversing takes a multi step approach as well:
a. reverse the current packets direction
b. reverse most of the flows direction sensitive flags
c. tag the flow as 'reversed'. This is because the 5 tuple is
*not* reversed, since it is immutable after the flows creation.
Most of the currently registered parsers benefit already:
- HTTP/SMTP/FTP/TLS patterns are registered per direction already
so they will benefit from the pattern midstream logic in (1)
above.
- the Rust based SMB parser uses a mix of pattern + probing parser
as described in (3) above.
- the NFS detection is purely done by probing parser and is updated
to consider the direction in that parser.
Other protocols, such as DNS, are still to do.
Ticket: #2572
The app layers with a custom iterator would skip a tx if during
the ..Cleanup() pass a transaction was removed.
Address this by storing the current index instead of the next
index. Also pass in the next "min_tx_id" to be incremented from
the last TX. Update loops to do this increment.
Also make sure that the min_id is properly updated if the last
TX is removed when out of order.
Finally add a SMB unittest to test this.
Reported by: Ilya Bakhtin
The mismatch between the types would randomly lead to the return code
of the Rust parser to be not correctly handled over the C/Rust
boundary. This would lead to the API considering a parser to be in
error state when it was not.
This is a DHCP decoder and logger written in Rust. Unlike most
parsers, this one is stateless so responses are not matched
up to requests by Suricata. However, the output does contain
enough fields to match them up in post-processing.
Rules are included to alert of malformed or truncated options.