You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/app-layer-protos.h

94 lines
2.3 KiB
C

/* Copyright (C) 2007-2013 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
* \author Anoop Saldanha <anoopsaldanha@gmail.com>
*/
#ifndef __APP_LAYER_PROTOS_H__
#define __APP_LAYER_PROTOS_H__
enum AppProtoEnum {
ALPROTO_UNKNOWN = 0,
ALPROTO_HTTP,
ALPROTO_FTP,
ALPROTO_SMTP,
ALPROTO_TLS, /* SSLv2, SSLv3 & TLSv1 */
ALPROTO_SSH,
ALPROTO_IMAP,
ALPROTO_MSN,
ALPROTO_JABBER,
ALPROTO_SMB,
ALPROTO_DCERPC,
ALPROTO_IRC,
ALPROTO_DNS,
ALPROTO_MODBUS,
ALPROTO_ENIP,
ALPROTO_DNP3,
ALPROTO_NFS,
ALPROTO_NTP,
ALPROTO_FTPDATA,
ALPROTO_TFTP,
ALPROTO_IKEV2,
ALPROTO_KRB5,
ALPROTO_DHCP,
ALPROTO_TEMPLATE,
ALPROTO_TEMPLATE_RUST,
/* used by the probing parser when alproto detection fails
* permanently for that particular stream */
ALPROTO_FAILED,
#ifdef UNITTESTS
ALPROTO_TEST,
#endif /* UNITESTS */
/* keep last */
ALPROTO_MAX,
};
detect: rewrite of the detect engine Use per tx detect_flags to track prefilter. Detect flags are used for 2 things: 1. marking tx as fully inspected 2. tracking already run prefilter (incl mpm) engines This supercedes the MpmIDs API for directionless tracking of the prefilter engines. When we have no SGH we have to flag the txs that are 'complete' as inspected as well. Special handling for the stream engine: If a rule mixes TX inspection and STREAM inspection, we can encounter the case where the rule is evaluated against multiple transactions during a single inspection run. As the stream data is exactly the same for each of those runs, it's wasteful to rerun inspection of the stream portion of the rule. This patch enables caching of the stream 'inspect engine' result in the local 'RuleMatchCandidateTx' array. This is valid only during the live of a single inspection run. Remove stateful inspection from 'mask' (SignatureMask). The mask wasn't used in most cases for those rules anyway, as there we rely on the prefilter. Add a alproto check to catch the remaining cases. When building the active non-mpm/non-prefilter list check not just the mask, but also the alproto. This especially helps stateful rules with negated mpm. Simplify AppLayerParserHasDecoderEvents usage in detection to only return true if protocol detection events are set. Other detection is done in inspect engines. Move rule group lookup and handling into it's own function. Handle 'post lookup' tasks immediately, instead of after the first detect run. The tasks were independent of the initial detection. Many cleanups and much refactoring.
8 years ago
// NOTE: if ALPROTO's get >= 256, update SignatureNonPrefilterStore
/* not using the enum as that is a unsigned int, so 4 bytes */
typedef uint16_t AppProto;
proto-detect: improve midstream support When Suricata picks up a flow it assumes the first packet is toserver. In a perfect world without packet loss and where all sessions neatly start after Suricata itself started, this would be true. However, in reality we have to account for packet loss and Suricata starting to get packets for flows already active be for Suricata is (re)started. The protocol records on the wire would often be able to tell us more though. For example in SMB1 and SMB2 records there is a flag that indicates whether the record is a request or a response. This patch is enabling the procotol detection engine to utilize this information to 'reverse' the flow. There are three ways in which this is supported in this patch: 1. patterns for detection are registered per direction. If the proto was not recognized in the traffic direction, and midstream is enabled, the pattern set for the opposing direction is also evaluated. If that matches, the flow is considered to be in the wrong direction and is reversed. 2. probing parsers now have a way to feed back their understanding of the flow direction. They are now passed the direction as Suricata sees the traffic when calling the probing parsers. The parser can then see if its own observation matches that, and pass back it's own view to the caller. 3. a new pattern + probing parser set up: probing parsers can now be registered with a pattern, so that when the pattern matches the probing parser is called as well. The probing parser can then provide the protocol detection engine with the direction of the traffic. The process of reversing takes a multi step approach as well: a. reverse the current packets direction b. reverse most of the flows direction sensitive flags c. tag the flow as 'reversed'. This is because the 5 tuple is *not* reversed, since it is immutable after the flows creation. Most of the currently registered parsers benefit already: - HTTP/SMTP/FTP/TLS patterns are registered per direction already so they will benefit from the pattern midstream logic in (1) above. - the Rust based SMB parser uses a mix of pattern + probing parser as described in (3) above. - the NFS detection is purely done by probing parser and is updated to consider the direction in that parser. Other protocols, such as DNS, are still to do. Ticket: #2572
6 years ago
static inline bool AppProtoIsValid(AppProto a)
{
return ((a > ALPROTO_UNKNOWN && a < ALPROTO_FAILED));
}
App layer API rewritten. The main files in question are: app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch]. Things addressed in this commit: - Brings out a proper separation between protocol detection phase and the parser phase. - The dns app layer now is registered such that we don't use "dnstcp" and "dnsudp" in the rules. A user who previously wrote a rule like this - "alert dnstcp....." or "alert dnsudp....." would now have to use, alert dns (ipproto:tcp;) or alert udp (app-layer-protocol:dns;) or alert ip (ipproto:udp; app-layer-protocol:dns;) The same rules extend to other another such protocol, dcerpc. - The app layer parser api now takes in the ipproto while registering callbacks. - The app inspection/detection engine also takes an ipproto. - All app layer parser functions now take direction as STREAM_TOSERVER or STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the functions. - FlowInitialize() and FlowRecycle() now resets proto to 0. This is needed by unittests, which would try to clean the flow, and that would call the api, AppLayerParserCleanupParserState(), which would try to clean the app state, but the app layer now needs an ipproto to figure out which api to internally call to clean the state, and if the ipproto is 0, it would return without trying to clean the state. - A lot of unittests are now updated where if they are using a flow and they need to use the app layer, we would set a flow ipproto. - The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
/**
* \brief Maps the ALPROTO_*, to its string equivalent.
*
* \param alproto App layer protocol id.
*
* \retval String equivalent for the alproto.
*/
const char *AppProtoToString(AppProto alproto);
/**
* \brief Maps a string to its ALPROTO_* equivalent.
*
* \param String equivalent for the alproto.
*
* \retval alproto App layer protocol id, or ALPROTO_UNKNOWN.
*/
AppProto StringToAppProto(const char *proto_name);
#endif /* __APP_LAYER_PROTOS_H__ */