You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/runmodes.c

691 lines
23 KiB
C

Add TILE-Gx mPIPE packet processing support. The TILE-Gx processor includes a packet processing engine, called mPIPE, that can deliver packets directly into user space memory. It handles buffer allocation and load balancing (either static 5-tuple hashing, or dynamic flow affinity hashing are used here). The new packet source code is in source-mpipe.c and source-mpipe.h A new Tile runmode is added that configures the Suricata pipelines in worker mode, where each thread does the entire packet processing pipeline. It scales across all the Gx chips sizes of 9, 16, 36 or 72 cores. The new runmode is in runmode-tile.c and runmode-tile.h The configure script detects the TILE-Gx architecture and defines HAVE_MPIPE, which is then used to conditionally enable the code to support mPIPE packet processing. Suricata runs on TILE-Gx even without mPIPE support enabled. The Suricata Packet structures are allocated by the mPIPE hardware by allocating the Suricata Packet structure immediatley before the mPIPE packet buffer and then pushing the mPIPE packet buffer pointer onto the mPIPE buffer stack. This way, mPIPE writes the packet data into the buffer, returns the mPIPE packet buffer pointer, which is then converted into a Suricata Packet pointer for processing inside Suricata. When the Packet is freed, the buffer is returned to mPIPE's buffer stack, by setting ReleasePacket to an mPIPE release specific function. The code checks for the largest Huge page available in Linux when Suricata is started. TILE-Gx supports Huge pages sizes of 16MB, 64MB, 256MB, 1GB and 4GB. Suricata then divides one of those page into packet buffers for mPIPE. The code is not yet optimized for high performance. Performance improvements will follow shortly. The code was originally written by Tom Decanio and then further modified by Tilera. This code has been tested with Tilera's Multicore Developement Environment (MDE) version 4.1.5. The TILEncore-Gx36 (PCIe card) and TILEmpower-Gx (1U Rack mount).
12 years ago
/* Copyright (C) 2007-2013 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/** \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Pre-cooked threading runmodes.
*/
#include "suricata-common.h"
#include "detect.h"
#include "detect-engine.h"
#include "detect-engine-mpm.h"
#include "tm-threads.h"
#include "util-debug.h"
#include "util-time.h"
#include "util-cpu.h"
#include "util-byte.h"
#include "util-affinity.h"
#include "conf.h"
#include "queue.h"
#include "runmodes.h"
#include "util-unittest.h"
#include "util-misc.h"
#include "alert-fastlog.h"
#include "alert-prelude.h"
#include "alert-unified2-alert.h"
#include "alert-debuglog.h"
#include "log-httplog.h"
#include "output.h"
#include "source-pfring.h"
int debuglog_enabled = 0;
/**
* \brief Holds description for a runmode.
*/
typedef struct RunMode_ {
/* the runmode type */
int runmode;
const char *name;
const char *description;
/* runmode function */
int (*RunModeFunc)(DetectEngineCtx *);
} RunMode;
typedef struct RunModes_ {
int no_of_runmodes;
RunMode *runmodes;
} RunModes;
/**
* A list of output modules that will be active for the run mode.
*/
typedef struct RunModeOutput_ {
TmModule *tm_module;
OutputCtx *output_ctx;
TAILQ_ENTRY(RunModeOutput_) entries;
} RunModeOutput;
TAILQ_HEAD(, RunModeOutput_) RunModeOutputs =
TAILQ_HEAD_INITIALIZER(RunModeOutputs);
static RunModes runmodes[RUNMODE_USER_MAX];
static char *active_runmode;
/**
* \internal
* \brief Translate a runmode mode to a printale string.
*
* \param runmode Runmode to be converted into a printable string.
*
* \retval string Printable string.
*/
static const char *RunModeTranslateModeToName(int runmode)
{
switch (runmode) {
case RUNMODE_PCAP_DEV:
return "PCAP_DEV";
case RUNMODE_PCAP_FILE:
return "PCAP_FILE";
case RUNMODE_PFRING:
#ifdef HAVE_PFRING
return "PFRING";
#else
return "PFRING(DISABLED)";
#endif
case RUNMODE_NFQ:
return "NFQ";
case RUNMODE_IPFW:
return "IPFW";
case RUNMODE_ERF_FILE:
return "ERF_FILE";
case RUNMODE_DAG:
return "ERF_DAG";
case RUNMODE_NAPATECH:
return "NAPATECH";
case RUNMODE_UNITTEST:
return "UNITTEST";
Add TILE-Gx mPIPE packet processing support. The TILE-Gx processor includes a packet processing engine, called mPIPE, that can deliver packets directly into user space memory. It handles buffer allocation and load balancing (either static 5-tuple hashing, or dynamic flow affinity hashing are used here). The new packet source code is in source-mpipe.c and source-mpipe.h A new Tile runmode is added that configures the Suricata pipelines in worker mode, where each thread does the entire packet processing pipeline. It scales across all the Gx chips sizes of 9, 16, 36 or 72 cores. The new runmode is in runmode-tile.c and runmode-tile.h The configure script detects the TILE-Gx architecture and defines HAVE_MPIPE, which is then used to conditionally enable the code to support mPIPE packet processing. Suricata runs on TILE-Gx even without mPIPE support enabled. The Suricata Packet structures are allocated by the mPIPE hardware by allocating the Suricata Packet structure immediatley before the mPIPE packet buffer and then pushing the mPIPE packet buffer pointer onto the mPIPE buffer stack. This way, mPIPE writes the packet data into the buffer, returns the mPIPE packet buffer pointer, which is then converted into a Suricata Packet pointer for processing inside Suricata. When the Packet is freed, the buffer is returned to mPIPE's buffer stack, by setting ReleasePacket to an mPIPE release specific function. The code checks for the largest Huge page available in Linux when Suricata is started. TILE-Gx supports Huge pages sizes of 16MB, 64MB, 256MB, 1GB and 4GB. Suricata then divides one of those page into packet buffers for mPIPE. The code is not yet optimized for high performance. Performance improvements will follow shortly. The code was originally written by Tom Decanio and then further modified by Tilera. This code has been tested with Tilera's Multicore Developement Environment (MDE) version 4.1.5. The TILEncore-Gx36 (PCIe card) and TILEmpower-Gx (1U Rack mount).
12 years ago
case RUNMODE_TILERA_MPIPE:
return "MPIPE";
case RUNMODE_AFP_DEV:
return "AF_PACKET_DEV";
unix-manager: add unix command socket and associated script This patch introduces a unix command socket. JSON formatted messages can be exchanged between suricata and a program connecting to a dedicated socket. The protocol is the following: * Client connects to the socket * It sends a version message: { "version": "$VERSION_ID" } * Server answers with { "return": "OK|NOK" } If server returns OK, the client is now allowed to send command. The format of command is the following: { "command": "pcap-file", "arguments": { "filename": "smtp-clean.pcap", "output-dir": "/tmp/out" } } The server will try to execute the "command" specified with the (optional) provided "arguments". The answer by server is the following: { "return": "OK|NOK", "message": JSON_OBJECT or information string } A simple script is provided and is available under scripts/suricatasc. It is not intended to be enterprise-grade tool but it is more a proof of concept/example code. The first command line argument of suricatasc is used to specify the socket to connect to. Configuration of the feature is made in the YAML under the 'unix-command' section: unix-command: enabled: yes filename: custom.socket The path specified in 'filename' is not absolute and is relative to the state directory. A new running mode called 'unix-socket' is also added. When starting in this mode, only a unix socket manager is started. When it receives a 'pcap-file' command, the manager start a 'pcap-file' running mode which does not really leave at the end of file but simply exit. The manager is then able to start a new running mode with a new file. To start this mode, Suricata must be started with the --unix-socket option which has an optional argument which fix the file name of the socket. The path is not absolute and is relative to the state directory. THe 'pcap-file' command adds a file to the list of files to treat. For each pcap file, a pcap file running mode is started and the output directory is changed to what specified in the command. The running mode specified in the 'runmode' YAML setting is used to select which running mode must be use for the pcap file treatment. This requires modification in suricata.c file where initialisation code is now conditional to the fact 'unix-socket' mode is not used. Two other commands exists to get info on the remaining tasks: * pcap-file-number: return the number of files in the waiting queue * pcap-file-list: return the list of waiting files 'pcap-file-list' returns a structured object as message. The structure is the following: { 'count': 2, 'files': ['file1.pcap', 'file2.pcap'] }
14 years ago
case RUNMODE_UNIX_SOCKET:
return "UNIX_SOCKET";
default:
SCLogError(SC_ERR_UNKNOWN_RUN_MODE, "Unknown runtime mode. Aborting");
exit(EXIT_FAILURE);
}
}
/**
* \internal
* \brief Dispatcher function for runmodes. Calls the required runmode function
* based on runmode + runmode_custom_id.
*
* \param runmode The runmode type.
* \param runmode_customd_id The runmode custom id.
* \param de_ctx Detection Engine Context.
*/
static RunMode *RunModeGetCustomMode(int runmode, const char *custom_mode)
{
int i;
for (i = 0; i < runmodes[runmode].no_of_runmodes; i++) {
if (strcmp(runmodes[runmode].runmodes[i].name, custom_mode) == 0)
return &runmodes[runmode].runmodes[i];
}
return NULL;
}
/**
* Return the running mode
*
* The returned string must not be freed.
*
* \return a string containing the current running mode
*/
char *RunmodeGetActive(void)
{
return active_runmode;
}
/**
* Return the running mode
*
* The returned string must not be freed.
*
* \return a string containing the current running mode
*/
const char *RunModeGetMainMode(void)
{
int mainmode = RunmodeGetCurrent();
return RunModeTranslateModeToName(mainmode);
}
/**
* \brief Register all runmodes in the engine.
*/
void RunModeRegisterRunModes(void)
{
memset(runmodes, 0, sizeof(runmodes));
RunModeIdsPcapRegister();
RunModeFilePcapRegister();
RunModeIdsPfringRegister();
RunModeIpsNFQRegister();
RunModeIpsIPFWRegister();
RunModeErfFileRegister();
RunModeErfDagRegister();
RunModeNapatechRegister();
RunModeIdsAFPRegister();
Add TILE-Gx mPIPE packet processing support. The TILE-Gx processor includes a packet processing engine, called mPIPE, that can deliver packets directly into user space memory. It handles buffer allocation and load balancing (either static 5-tuple hashing, or dynamic flow affinity hashing are used here). The new packet source code is in source-mpipe.c and source-mpipe.h A new Tile runmode is added that configures the Suricata pipelines in worker mode, where each thread does the entire packet processing pipeline. It scales across all the Gx chips sizes of 9, 16, 36 or 72 cores. The new runmode is in runmode-tile.c and runmode-tile.h The configure script detects the TILE-Gx architecture and defines HAVE_MPIPE, which is then used to conditionally enable the code to support mPIPE packet processing. Suricata runs on TILE-Gx even without mPIPE support enabled. The Suricata Packet structures are allocated by the mPIPE hardware by allocating the Suricata Packet structure immediatley before the mPIPE packet buffer and then pushing the mPIPE packet buffer pointer onto the mPIPE buffer stack. This way, mPIPE writes the packet data into the buffer, returns the mPIPE packet buffer pointer, which is then converted into a Suricata Packet pointer for processing inside Suricata. When the Packet is freed, the buffer is returned to mPIPE's buffer stack, by setting ReleasePacket to an mPIPE release specific function. The code checks for the largest Huge page available in Linux when Suricata is started. TILE-Gx supports Huge pages sizes of 16MB, 64MB, 256MB, 1GB and 4GB. Suricata then divides one of those page into packet buffers for mPIPE. The code is not yet optimized for high performance. Performance improvements will follow shortly. The code was originally written by Tom Decanio and then further modified by Tilera. This code has been tested with Tilera's Multicore Developement Environment (MDE) version 4.1.5. The TILEncore-Gx36 (PCIe card) and TILEmpower-Gx (1U Rack mount).
12 years ago
RunModeTileMpipeRegister();
unix-manager: add unix command socket and associated script This patch introduces a unix command socket. JSON formatted messages can be exchanged between suricata and a program connecting to a dedicated socket. The protocol is the following: * Client connects to the socket * It sends a version message: { "version": "$VERSION_ID" } * Server answers with { "return": "OK|NOK" } If server returns OK, the client is now allowed to send command. The format of command is the following: { "command": "pcap-file", "arguments": { "filename": "smtp-clean.pcap", "output-dir": "/tmp/out" } } The server will try to execute the "command" specified with the (optional) provided "arguments". The answer by server is the following: { "return": "OK|NOK", "message": JSON_OBJECT or information string } A simple script is provided and is available under scripts/suricatasc. It is not intended to be enterprise-grade tool but it is more a proof of concept/example code. The first command line argument of suricatasc is used to specify the socket to connect to. Configuration of the feature is made in the YAML under the 'unix-command' section: unix-command: enabled: yes filename: custom.socket The path specified in 'filename' is not absolute and is relative to the state directory. A new running mode called 'unix-socket' is also added. When starting in this mode, only a unix socket manager is started. When it receives a 'pcap-file' command, the manager start a 'pcap-file' running mode which does not really leave at the end of file but simply exit. The manager is then able to start a new running mode with a new file. To start this mode, Suricata must be started with the --unix-socket option which has an optional argument which fix the file name of the socket. The path is not absolute and is relative to the state directory. THe 'pcap-file' command adds a file to the list of files to treat. For each pcap file, a pcap file running mode is started and the output directory is changed to what specified in the command. The running mode specified in the 'runmode' YAML setting is used to select which running mode must be use for the pcap file treatment. This requires modification in suricata.c file where initialisation code is now conditional to the fact 'unix-socket' mode is not used. Two other commands exists to get info on the remaining tasks: * pcap-file-number: return the number of files in the waiting queue * pcap-file-list: return the list of waiting files 'pcap-file-list' returns a structured object as message. The structure is the following: { 'count': 2, 'files': ['file1.pcap', 'file2.pcap'] }
14 years ago
RunModeUnixSocketRegister();
#ifdef UNITTESTS
UtRunModeRegister();
#endif
return;
}
/**
* \brief Lists all registered runmodes.
*/
void RunModeListRunmodes(void)
{
printf("------------------------------------- Runmodes -------------------"
"-----------------------\n");
printf("| %-17s | %-17s | %-10s \n",
"RunMode Type", "Custom Mode ", "Descripition");
printf("|-----------------------------------------------------------------"
"-----------------------\n");
int i = RUNMODE_UNKNOWN + 1;
int j = 0;
for ( ; i < RUNMODE_USER_MAX; i++) {
int mode_displayed = 0;
for (j = 0; j < runmodes[i].no_of_runmodes; j++) {
if (mode_displayed == 1) {
printf("| ----------------------------------------------"
"-----------------------\n");
RunMode *runmode = &runmodes[i].runmodes[j];
printf("| %-17s | %-17s | %-27s \n",
"",
runmode->name,
runmode->description);
} else {
RunMode *runmode = &runmodes[i].runmodes[j];
printf("| %-17s | %-17s | %-27s \n",
RunModeTranslateModeToName(runmode->runmode),
runmode->name,
runmode->description);
}
if (mode_displayed == 0)
mode_displayed = 1;
}
printf("|-----------------------------------------------------------------"
"-----------------------\n");
}
return;
}
/**
* \param de_ctx Detection engine ctx. Can be NULL is detect is disabled.
*/
void RunModeDispatch(int runmode, const char *custom_mode, DetectEngineCtx *de_ctx)
{
char *local_custom_mode = NULL;
if (custom_mode == NULL) {
char *val = NULL;
if (ConfGet("runmode", &val) != 1) {
custom_mode = NULL;
} else {
custom_mode = val;
}
}
if (custom_mode == NULL) {
switch (runmode) {
case RUNMODE_PCAP_DEV:
custom_mode = RunModeIdsGetDefaultMode();
break;
case RUNMODE_PCAP_FILE:
custom_mode = RunModeFilePcapGetDefaultMode();
break;
#ifdef HAVE_PFRING
case RUNMODE_PFRING:
custom_mode = RunModeIdsPfringGetDefaultMode();
break;
#endif
case RUNMODE_NFQ:
custom_mode = RunModeIpsNFQGetDefaultMode();
break;
case RUNMODE_IPFW:
custom_mode = RunModeIpsIPFWGetDefaultMode();
break;
case RUNMODE_ERF_FILE:
custom_mode = RunModeErfFileGetDefaultMode();
break;
case RUNMODE_DAG:
custom_mode = RunModeErfDagGetDefaultMode();
break;
Add TILE-Gx mPIPE packet processing support. The TILE-Gx processor includes a packet processing engine, called mPIPE, that can deliver packets directly into user space memory. It handles buffer allocation and load balancing (either static 5-tuple hashing, or dynamic flow affinity hashing are used here). The new packet source code is in source-mpipe.c and source-mpipe.h A new Tile runmode is added that configures the Suricata pipelines in worker mode, where each thread does the entire packet processing pipeline. It scales across all the Gx chips sizes of 9, 16, 36 or 72 cores. The new runmode is in runmode-tile.c and runmode-tile.h The configure script detects the TILE-Gx architecture and defines HAVE_MPIPE, which is then used to conditionally enable the code to support mPIPE packet processing. Suricata runs on TILE-Gx even without mPIPE support enabled. The Suricata Packet structures are allocated by the mPIPE hardware by allocating the Suricata Packet structure immediatley before the mPIPE packet buffer and then pushing the mPIPE packet buffer pointer onto the mPIPE buffer stack. This way, mPIPE writes the packet data into the buffer, returns the mPIPE packet buffer pointer, which is then converted into a Suricata Packet pointer for processing inside Suricata. When the Packet is freed, the buffer is returned to mPIPE's buffer stack, by setting ReleasePacket to an mPIPE release specific function. The code checks for the largest Huge page available in Linux when Suricata is started. TILE-Gx supports Huge pages sizes of 16MB, 64MB, 256MB, 1GB and 4GB. Suricata then divides one of those page into packet buffers for mPIPE. The code is not yet optimized for high performance. Performance improvements will follow shortly. The code was originally written by Tom Decanio and then further modified by Tilera. This code has been tested with Tilera's Multicore Developement Environment (MDE) version 4.1.5. The TILEncore-Gx36 (PCIe card) and TILEmpower-Gx (1U Rack mount).
12 years ago
case RUNMODE_TILERA_MPIPE:
custom_mode = RunModeTileMpipeGetDefaultMode();
break;
case RUNMODE_NAPATECH:
custom_mode = RunModeNapatechGetDefaultMode();
break;
case RUNMODE_AFP_DEV:
custom_mode = RunModeAFPGetDefaultMode();
break;
unix-manager: add unix command socket and associated script This patch introduces a unix command socket. JSON formatted messages can be exchanged between suricata and a program connecting to a dedicated socket. The protocol is the following: * Client connects to the socket * It sends a version message: { "version": "$VERSION_ID" } * Server answers with { "return": "OK|NOK" } If server returns OK, the client is now allowed to send command. The format of command is the following: { "command": "pcap-file", "arguments": { "filename": "smtp-clean.pcap", "output-dir": "/tmp/out" } } The server will try to execute the "command" specified with the (optional) provided "arguments". The answer by server is the following: { "return": "OK|NOK", "message": JSON_OBJECT or information string } A simple script is provided and is available under scripts/suricatasc. It is not intended to be enterprise-grade tool but it is more a proof of concept/example code. The first command line argument of suricatasc is used to specify the socket to connect to. Configuration of the feature is made in the YAML under the 'unix-command' section: unix-command: enabled: yes filename: custom.socket The path specified in 'filename' is not absolute and is relative to the state directory. A new running mode called 'unix-socket' is also added. When starting in this mode, only a unix socket manager is started. When it receives a 'pcap-file' command, the manager start a 'pcap-file' running mode which does not really leave at the end of file but simply exit. The manager is then able to start a new running mode with a new file. To start this mode, Suricata must be started with the --unix-socket option which has an optional argument which fix the file name of the socket. The path is not absolute and is relative to the state directory. THe 'pcap-file' command adds a file to the list of files to treat. For each pcap file, a pcap file running mode is started and the output directory is changed to what specified in the command. The running mode specified in the 'runmode' YAML setting is used to select which running mode must be use for the pcap file treatment. This requires modification in suricata.c file where initialisation code is now conditional to the fact 'unix-socket' mode is not used. Two other commands exists to get info on the remaining tasks: * pcap-file-number: return the number of files in the waiting queue * pcap-file-list: return the list of waiting files 'pcap-file-list' returns a structured object as message. The structure is the following: { 'count': 2, 'files': ['file1.pcap', 'file2.pcap'] }
14 years ago
case RUNMODE_UNIX_SOCKET:
custom_mode = RunModeUnixSocketGetDefaultMode();
break;
default:
SCLogError(SC_ERR_UNKNOWN_RUN_MODE, "Unknown runtime mode. Aborting");
exit(EXIT_FAILURE);
}
} else { /* if (custom_mode == NULL) */
/* Add compability with old 'worker' name */
if (!strcmp("worker", custom_mode)) {
SCLogWarning(SC_ERR_RUNMODE, "'worker' mode have been renamed "
"to 'workers', please modify your setup.");
local_custom_mode = SCStrdup("workers");
if (unlikely(local_custom_mode == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to dup custom mode");
exit(EXIT_FAILURE);
}
custom_mode = local_custom_mode;
}
}
#ifdef __SC_CUDA_SUPPORT__
if (PatternMatchDefaultMatcher() == MPM_AC_CUDA &&
strcasecmp(custom_mode, "autofp") != 0) {
SCLogError(SC_ERR_RUNMODE, "When using a cuda mpm, the only runmode we "
"support is autofp.");
exit(EXIT_FAILURE);
}
#endif
RunMode *mode = RunModeGetCustomMode(runmode, custom_mode);
if (mode == NULL) {
SCLogError(SC_ERR_RUNMODE, "The custom type \"%s\" doesn't exist "
"for this runmode type \"%s\". Please use --list-runmodes to "
"see available custom types for this runmode",
custom_mode, RunModeTranslateModeToName(runmode));
exit(EXIT_FAILURE);
}
/* Export the custom mode */
active_runmode = SCStrdup(custom_mode);
if (unlikely(active_runmode == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to dup active mode");
exit(EXIT_FAILURE);
}
mode->RunModeFunc(de_ctx);
if (local_custom_mode != NULL)
SCFree(local_custom_mode);
return;
}
/**
* \brief Registers a new runmode.
*
* \param runmode Runmode type.
* \param name Custom mode for this specific runmode type. Within each
* runmode type, each custom name is a primary key.
* \param description Description for this runmode.
* \param RunModeFunc The function to be run for this runmode.
*/
void RunModeRegisterNewRunMode(int runmode, const char *name,
const char *description,
int (*RunModeFunc)(DetectEngineCtx *))
{
void *ptmp;
if (RunModeGetCustomMode(runmode, name) != NULL) {
SCLogError(SC_ERR_RUNMODE, "A runmode by this custom name has already "
"been registered. Please use an unique name");
return;
}
ptmp = SCRealloc(runmodes[runmode].runmodes,
(runmodes[runmode].no_of_runmodes + 1) * sizeof(RunMode));
if (ptmp == NULL) {
SCFree(runmodes[runmode].runmodes);
runmodes[runmode].runmodes = NULL;
exit(EXIT_FAILURE);
}
runmodes[runmode].runmodes = ptmp;
RunMode *mode = &runmodes[runmode].runmodes[runmodes[runmode].no_of_runmodes];
runmodes[runmode].no_of_runmodes++;
mode->runmode = runmode;
mode->name = SCStrdup(name);
if (unlikely(mode->name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Failed to allocate string");
exit(EXIT_FAILURE);
}
mode->description = SCStrdup(description);
if (unlikely(mode->description == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Failed to allocate string");
exit(EXIT_FAILURE);
}
mode->RunModeFunc = RunModeFunc;
return;
}
/**
* Cleanup the run mode.
*/
void RunModeShutDown(void)
{
/* Close any log files. */
RunModeOutput *output;
while ((output = TAILQ_FIRST(&RunModeOutputs))) {
SCLogDebug("Shutting down output %s.", output->tm_module->name);
TAILQ_REMOVE(&RunModeOutputs, output, entries);
if (output->output_ctx != NULL && output->output_ctx->DeInit != NULL)
output->output_ctx->DeInit(output->output_ctx);
SCFree(output);
}
}
static TmModule *pkt_logger_module = NULL;
static TmModule *tx_logger_module = NULL;
static TmModule *file_logger_module = NULL;
static TmModule *filedata_logger_module = NULL;
/** \brief Turn output into thread module */
static void SetupOutput(const char *name, OutputModule *module, OutputCtx *output_ctx)
{
TmModule *tm_module = TmModuleGetByName(module->name);
if (tm_module == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"TmModuleGetByName for %s failed", module->name);
exit(EXIT_FAILURE);
}
if (strcmp(tmm_modules[TMM_ALERTDEBUGLOG].name, tm_module->name) == 0)
debuglog_enabled = 1;
if (module->PacketLogFunc) {
SCLogDebug("%s is a packet logger", module->name);
OutputRegisterPacketLogger(module->name, module->PacketLogFunc,
module->PacketConditionFunc, output_ctx);
/* need one instance of the packet logger module */
if (pkt_logger_module == NULL) {
pkt_logger_module = TmModuleGetByName("__packet_logger__");
if (pkt_logger_module == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"TmModuleGetByName for __packet_logger__ failed");
exit(EXIT_FAILURE);
}
RunModeOutput *runmode_output = SCCalloc(1, sizeof(RunModeOutput));
if (unlikely(runmode_output == NULL))
return;
runmode_output->tm_module = pkt_logger_module;
runmode_output->output_ctx = NULL;
TAILQ_INSERT_TAIL(&RunModeOutputs, runmode_output, entries);
SCLogDebug("__packet_logger__ added");
}
} else if (module->TxLogFunc) {
SCLogDebug("%s is a tx logger", module->name);
OutputRegisterTxLogger(module->name, module->alproto,
module->TxLogFunc, output_ctx);
/* need one instance of the tx logger module */
if (tx_logger_module == NULL) {
tx_logger_module = TmModuleGetByName("__tx_logger__");
if (tx_logger_module == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"TmModuleGetByName for __tx_logger__ failed");
exit(EXIT_FAILURE);
}
RunModeOutput *runmode_output = SCCalloc(1, sizeof(RunModeOutput));
if (unlikely(runmode_output == NULL))
return;
runmode_output->tm_module = tx_logger_module;
runmode_output->output_ctx = NULL;
TAILQ_INSERT_TAIL(&RunModeOutputs, runmode_output, entries);
SCLogDebug("__tx_logger__ added");
}
} else if (module->FileLogFunc) {
SCLogDebug("%s is a file logger", module->name);
OutputRegisterFileLogger(module->name, module->FileLogFunc, output_ctx);
/* need one instance of the tx logger module */
if (file_logger_module == NULL) {
file_logger_module = TmModuleGetByName("__file_logger__");
if (file_logger_module == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"TmModuleGetByName for __file_logger__ failed");
exit(EXIT_FAILURE);
}
RunModeOutput *runmode_output = SCCalloc(1, sizeof(RunModeOutput));
if (unlikely(runmode_output == NULL))
return;
runmode_output->tm_module = file_logger_module;
runmode_output->output_ctx = NULL;
TAILQ_INSERT_TAIL(&RunModeOutputs, runmode_output, entries);
SCLogDebug("__file_logger__ added");
}
} else if (module->FiledataLogFunc) {
SCLogDebug("%s is a filedata logger", module->name);
OutputRegisterFiledataLogger(module->name, module->FiledataLogFunc, output_ctx);
/* need one instance of the tx logger module */
if (filedata_logger_module == NULL) {
filedata_logger_module = TmModuleGetByName("__filedata_logger__");
if (filedata_logger_module == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"TmModuleGetByName for __filedata_logger__ failed");
exit(EXIT_FAILURE);
}
RunModeOutput *runmode_output = SCCalloc(1, sizeof(RunModeOutput));
if (unlikely(runmode_output == NULL))
return;
runmode_output->tm_module = filedata_logger_module;
runmode_output->output_ctx = NULL;
TAILQ_INSERT_TAIL(&RunModeOutputs, runmode_output, entries);
SCLogDebug("__filedata_logger__ added");
}
} else {
SCLogDebug("%s is a regular logger", module->name);
RunModeOutput *runmode_output = SCCalloc(1, sizeof(RunModeOutput));
if (unlikely(runmode_output == NULL))
return;
runmode_output->tm_module = tm_module;
runmode_output->output_ctx = output_ctx;
TAILQ_INSERT_TAIL(&RunModeOutputs, runmode_output, entries);
}
}
/**
* Initialize the output modules.
*/
void RunModeInitializeOutputs(void)
{
ConfNode *outputs = ConfGetNode("outputs");
if (outputs == NULL) {
/* No "outputs" section in the configuration. */
return;
}
ConfNode *output, *output_config;
const char *enabled;
TAILQ_FOREACH(output, &outputs->head, next) {
15 years ago
if (strcmp(output->val, "stats") == 0)
continue;
output_config = ConfNodeLookupChild(output, output->val);
if (output_config == NULL) {
/* Shouldn't happen. */
SCLogError(SC_ERR_INVALID_ARGUMENT,
"Failed to lookup configuration child node: fast");
exit(1);
}
enabled = ConfNodeLookupChildValue(output_config, "enabled");
if (enabled == NULL || !ConfValIsTrue(enabled)) {
continue;
}
if (strncmp(output->val, "unified-", sizeof("unified-") - 1) == 0) {
SCLogWarning(SC_ERR_NOT_SUPPORTED,
"Unified1 is no longer supported,"
" use Unified2 instead "
"(see https://redmine.openinfosecfoundation.org/issues/353"
" for an explanation)");
continue;
} else if (strcmp(output->val, "alert-prelude") == 0) {
#ifndef PRELUDE
SCLogWarning(SC_ERR_NOT_SUPPORTED,
"Prelude support not compiled in. Reconfigure/"
"recompile with --enable-prelude to add Prelude "
"support.");
continue;
#endif
} else if (strcmp(output->val, "eve-log") == 0) {
#ifndef HAVE_LIBJANSSON
SCLogWarning(SC_ERR_NOT_SUPPORTED,
"Eve-log support not compiled in. Reconfigure/"
"recompile with libjansson and its development "
"files installed to add eve-log support.");
continue;
#endif
}
OutputModule *module = OutputGetModuleByConfName(output->val);
if (module == NULL) {
SCLogWarning(SC_ERR_INVALID_ARGUMENT,
"No output module named %s, ignoring", output->val);
continue;
}
OutputCtx *output_ctx = NULL;
if (module->InitFunc != NULL) {
output_ctx = module->InitFunc(output_config);
if (output_ctx == NULL) {
/* In most cases the init function will have logged the
* error. Maybe we should exit on init errors? */
continue;
}
} else if (module->InitSubFunc != NULL) {
SCLogInfo("skipping submodule");
continue;
}
// TODO if module == parent, find it's children
if (strcmp(output->val, "eve-log") == 0) {
ConfNode *types = ConfNodeLookupChild(output_config, "types");
SCLogInfo("types %p", types);
if (types != NULL) {
ConfNode *type = NULL;
TAILQ_FOREACH(type, &types->head, next) {
SCLogInfo("type %s", type->val);
char subname[256];
snprintf(subname, sizeof(subname), "%s.%s", output->val, type->val);
OutputModule *sub_module = OutputGetModuleByConfName(subname);
if (sub_module == NULL) {
SCLogWarning(SC_ERR_INVALID_ARGUMENT,
"No output module named %s, ignoring", subname);
continue;
}
if (sub_module->parent_name == NULL ||
strcmp(sub_module->parent_name,output->val) != 0) {
SCLogWarning(SC_ERR_INVALID_ARGUMENT,
"bad parent for %s, ignoring", subname);
continue;
}
if (sub_module->InitSubFunc == NULL) {
SCLogWarning(SC_ERR_INVALID_ARGUMENT,
"bad sub-module for %s, ignoring", subname);
continue;
}
ConfNode *sub_output_config = ConfNodeLookupChild(type, type->val);
// sub_output_config may be NULL if no config
/* pass on parent output_ctx */
OutputCtx *sub_output_ctx =
sub_module->InitSubFunc(sub_output_config, output_ctx);
if (sub_output_ctx == NULL) {
continue;
}
SetupOutput(sub_module->name, sub_module, sub_output_ctx);
}
}
} else {
SetupOutput(module->name, module, output_ctx);
}
}
}
/**
* Setup the outputs for this run mode.
*
* \param tv The ThreadVars for the thread the outputs will be
* appended to.
*/
void SetupOutputs(ThreadVars *tv)
{
RunModeOutput *output;
TAILQ_FOREACH(output, &RunModeOutputs, entries) {
tv->cap_flags |= output->tm_module->cap_flags;
TmSlotSetFuncAppend(tv, output->tm_module, output->output_ctx);
}
}
float threading_detect_ratio = 1;
/**
* Initialize multithreading settings.
*/
void RunModeInitialize(void)
{
threading_set_cpu_affinity = FALSE;
if ((ConfGetBool("threading.set-cpu-affinity", &threading_set_cpu_affinity)) == 0) {
threading_set_cpu_affinity = FALSE;
}
/* try to get custom cpu mask value if needed */
if (threading_set_cpu_affinity == TRUE) {
AffinitySetupLoadFromConfig();
}
if ((ConfGetFloat("threading.detect-thread-ratio", &threading_detect_ratio)) != 1) {
if (ConfGetNode("threading.detect-thread-ratio") != NULL)
WarnInvalidConfEntry("threading.detect-thread-ratio", "%s", "1");
threading_detect_ratio = 1;
}
SCLogDebug("threading.detect-thread-ratio %f", threading_detect_ratio);
}