You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/decode.c

527 lines
16 KiB
C

/* Copyright (C) 2007-2013 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup decode Packet decoding
*
* \brief Code in charge of protocol decoding
*
* The task of decoding packets is made in different files and
* as Suricata is supporting encapsulation there is a potential
* recursivity in the call.
*
* For each protocol a DecodePROTO function is provided. For
* example we have DecodeIPV4() for IPv4 and DecodePPP() for
* PPP.
*
* These functions have all a pkt and and a len argument which
* are respectively a pointer to the protocol data and the length
* of this protocol data.
*
* \attention The pkt parameter must point to the effective data because
* it will be used later to set per protocol pointer like Packet::tcph
*
* @{
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Decode the raw packet
*/
#include "suricata-common.h"
#include "suricata.h"
#include "conf.h"
#include "decode.h"
#include "util-debug.h"
#include "util-mem.h"
#include "app-layer-detect-proto.h"
Add per packet profiling. Per packet profiling uses tick based accounting. It has 2 outputs, a summary and a csv file that contains per packet stats. Stats per packet include: 1) total ticks spent 2) ticks spent per individual thread module 3) "threading overhead" which is simply calculated by subtracting (2) of (1). A number of changes were made to integrate the new code in a clean way: a number of generic enums are now placed in tm-threads-common.h so we can include them from any part of the engine. Code depends on --enable-profiling just like the rule profiling code. New yaml parameters: profiling: # packet profiling packets: # Profiling can be disabled here, but it will still have a # performance impact if compiled in. enabled: yes filename: packet_stats.log append: yes # per packet csv output csv: # Output can be disabled here, but it will still have a # performance impact if compiled in. enabled: no filename: packet_stats.csv Example output of summary stats: IP ver Proto cnt min max avg ------ ----- ------ ------ ---------- ------- IPv4 6 19436 11448 5404365 32993 IPv4 256 4 11511 49968 30575 Per Thread module stats: Thread Module IP ver Proto cnt min max avg ------------------------ ------ ----- ------ ------ ---------- ------- TMM_DECODEPCAPFILE IPv4 6 19434 1242 47889 1770 TMM_DETECT IPv4 6 19436 1107 137241 1504 TMM_ALERTFASTLOG IPv4 6 19436 90 1323 155 TMM_ALERTUNIFIED2ALERT IPv4 6 19436 108 1359 138 TMM_ALERTDEBUGLOG IPv4 6 19436 90 1134 154 TMM_LOGHTTPLOG IPv4 6 19436 414 5392089 7944 TMM_STREAMTCP IPv4 6 19434 828 1299159 19438 The proto 256 is a counter for handling of pseudo/tunnel packets. Example output of csv: pcap_cnt,ipver,ipproto,total,TMM_DECODENFQ,TMM_VERDICTNFQ,TMM_RECEIVENFQ,TMM_RECEIVEPCAP,TMM_RECEIVEPCAPFILE,TMM_DECODEPCAP,TMM_DECODEPCAPFILE,TMM_RECEIVEPFRING,TMM_DECODEPFRING,TMM_DETECT,TMM_ALERTFASTLOG,TMM_ALERTFASTLOG4,TMM_ALERTFASTLOG6,TMM_ALERTUNIFIEDLOG,TMM_ALERTUNIFIEDALERT,TMM_ALERTUNIFIED2ALERT,TMM_ALERTPRELUDE,TMM_ALERTDEBUGLOG,TMM_ALERTSYSLOG,TMM_LOGDROPLOG,TMM_ALERTSYSLOG4,TMM_ALERTSYSLOG6,TMM_RESPONDREJECT,TMM_LOGHTTPLOG,TMM_LOGHTTPLOG4,TMM_LOGHTTPLOG6,TMM_PCAPLOG,TMM_STREAMTCP,TMM_DECODEIPFW,TMM_VERDICTIPFW,TMM_RECEIVEIPFW,TMM_RECEIVEERFFILE,TMM_DECODEERFFILE,TMM_RECEIVEERFDAG,TMM_DECODEERFDAG,threading 1,4,6,172008,0,0,0,0,0,0,47889,0,0,48582,1323,0,0,0,0,1359,0,1134,0,0,0,0,0,8028,0,0,0,49356,0,0,0,0,0,0,0,14337 First line of the file contains labels. 2 example gnuplot scripts added to plot the data.
14 years ago
#include "tm-threads.h"
#include "util-error.h"
#include "util-print.h"
#include "tmqh-packetpool.h"
Add per packet profiling. Per packet profiling uses tick based accounting. It has 2 outputs, a summary and a csv file that contains per packet stats. Stats per packet include: 1) total ticks spent 2) ticks spent per individual thread module 3) "threading overhead" which is simply calculated by subtracting (2) of (1). A number of changes were made to integrate the new code in a clean way: a number of generic enums are now placed in tm-threads-common.h so we can include them from any part of the engine. Code depends on --enable-profiling just like the rule profiling code. New yaml parameters: profiling: # packet profiling packets: # Profiling can be disabled here, but it will still have a # performance impact if compiled in. enabled: yes filename: packet_stats.log append: yes # per packet csv output csv: # Output can be disabled here, but it will still have a # performance impact if compiled in. enabled: no filename: packet_stats.csv Example output of summary stats: IP ver Proto cnt min max avg ------ ----- ------ ------ ---------- ------- IPv4 6 19436 11448 5404365 32993 IPv4 256 4 11511 49968 30575 Per Thread module stats: Thread Module IP ver Proto cnt min max avg ------------------------ ------ ----- ------ ------ ---------- ------- TMM_DECODEPCAPFILE IPv4 6 19434 1242 47889 1770 TMM_DETECT IPv4 6 19436 1107 137241 1504 TMM_ALERTFASTLOG IPv4 6 19436 90 1323 155 TMM_ALERTUNIFIED2ALERT IPv4 6 19436 108 1359 138 TMM_ALERTDEBUGLOG IPv4 6 19436 90 1134 154 TMM_LOGHTTPLOG IPv4 6 19436 414 5392089 7944 TMM_STREAMTCP IPv4 6 19434 828 1299159 19438 The proto 256 is a counter for handling of pseudo/tunnel packets. Example output of csv: pcap_cnt,ipver,ipproto,total,TMM_DECODENFQ,TMM_VERDICTNFQ,TMM_RECEIVENFQ,TMM_RECEIVEPCAP,TMM_RECEIVEPCAPFILE,TMM_DECODEPCAP,TMM_DECODEPCAPFILE,TMM_RECEIVEPFRING,TMM_DECODEPFRING,TMM_DETECT,TMM_ALERTFASTLOG,TMM_ALERTFASTLOG4,TMM_ALERTFASTLOG6,TMM_ALERTUNIFIEDLOG,TMM_ALERTUNIFIEDALERT,TMM_ALERTUNIFIED2ALERT,TMM_ALERTPRELUDE,TMM_ALERTDEBUGLOG,TMM_ALERTSYSLOG,TMM_LOGDROPLOG,TMM_ALERTSYSLOG4,TMM_ALERTSYSLOG6,TMM_RESPONDREJECT,TMM_LOGHTTPLOG,TMM_LOGHTTPLOG4,TMM_LOGHTTPLOG6,TMM_PCAPLOG,TMM_STREAMTCP,TMM_DECODEIPFW,TMM_VERDICTIPFW,TMM_RECEIVEIPFW,TMM_RECEIVEERFFILE,TMM_DECODEERFFILE,TMM_RECEIVEERFDAG,TMM_DECODEERFDAG,threading 1,4,6,172008,0,0,0,0,0,0,47889,0,0,48582,1323,0,0,0,0,1359,0,1134,0,0,0,0,0,8028,0,0,0,49356,0,0,0,0,0,0,0,14337 First line of the file contains labels. 2 example gnuplot scripts added to plot the data.
14 years ago
#include "util-profiling.h"
#include "pkt-var.h"
int DecodeTunnel(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p,
uint8_t *pkt, uint16_t len, PacketQueue *pq, uint8_t proto)
{
switch (proto) {
16 years ago
case PPP_OVER_GRE:
return DecodePPP(tv, dtv, p, pkt, len, pq);
case IPPROTO_IP:
return DecodeIPV4(tv, dtv, p, pkt, len, pq);
case IPPROTO_IPV6:
return DecodeIPV6(tv, dtv, p, pkt, len, pq);
16 years ago
case VLAN_OVER_GRE:
return DecodeVLAN(tv, dtv, p, pkt, len, pq);
default:
SCLogInfo("FIXME: DecodeTunnel: protocol %" PRIu32 " not supported.", proto);
break;
}
return TM_ECODE_OK;
}
/**
* \brief Return a malloced packet.
*/
void PacketFree(Packet *p)
{
PACKET_CLEANUP(p);
SCFree(p);
}
/**
* \brief Finalize decoding of a packet
*
* This function needs to be call at the end of decode
* functions when decoding has been succesful.
*
*/
void PacketDecodeFinalize(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p)
{
if (p->flags & PKT_IS_INVALID)
SCPerfCounterIncr(dtv->counter_invalid, tv->sc_perf_pca);
#ifdef __SC_CUDA_SUPPORT__
if (dtv->cuda_vars.mpm_is_cuda)
CudaBufferPacket(&dtv->cuda_vars, p);
#endif
}
/**
* \brief Get a malloced packet.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromAlloc(void)
{
Packet *p = SCMalloc(SIZE_OF_PACKET);
if (unlikely(p == NULL)) {
return NULL;
}
memset(p, 0, SIZE_OF_PACKET);
PACKET_INITIALIZE(p);
p->ReleasePacket = PacketFree;
p->flags |= PKT_ALLOC;
SCLogDebug("allocated a new packet only using alloc...");
PACKET_PROFILING_START(p);
return p;
}
/**
* \brief Return a packet to where it was allocated.
*/
void PacketFreeOrRelease(Packet *p)
{
if (p->flags & PKT_ALLOC)
PacketFree(p);
else
PacketPoolReturnPacket(p);
}
/**
* \brief Get a packet. We try to get a packet from the packetpool first, but
* if that is empty we alloc a packet that is free'd again after
* processing.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromQueueOrAlloc(void)
{
Packet *p = NULL;
/* try the pool first */
if (PacketPoolSize() > 0) {
p = PacketPoolGetPacket();
}
if (p == NULL) {
/* non fatal, we're just not processing a packet then */
p = PacketGetFromAlloc();
} else {
PACKET_PROFILING_START(p);
}
return p;
}
/**
* \brief Copy data to Packet payload at given offset
*
* This function copies data/payload to a Packet. It uses the
* space allocated at Packet creation (pointed by Packet::pkt)
* or allocate some memory (pointed by Packet::ext_pkt) if the
* data size is to big to fit in initial space (of size
* default_packet_size).
*
* \param Pointer to the Packet to modify
* \param Offset of the copy relatively to payload of Packet
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyDataOffset(Packet *p, int offset, uint8_t *data, int datalen)
{
if (unlikely(offset + datalen > MAX_PAYLOAD_SIZE)) {
/* too big */
return -1;
}
/* Do we have already an packet with allocated data */
if (! p->ext_pkt) {
if (offset + datalen <= (int)default_packet_size) {
/* data will fit in memory allocated with packet */
memcpy(p->pkt + offset, data, datalen);
} else {
/* here we need a dynamic allocation */
p->ext_pkt = SCMalloc(MAX_PAYLOAD_SIZE);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
/* copy initial data */
memcpy(p->ext_pkt, GET_PKT_DIRECT_DATA(p), GET_PKT_DIRECT_MAX_SIZE(p));
/* copy data as asked */
memcpy(p->ext_pkt + offset, data, datalen);
}
} else {
memcpy(p->ext_pkt + offset, data, datalen);
}
return 0;
}
/**
* \brief Copy data to Packet payload and set packet length
*
* \param Pointer to the Packet to modify
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyData(Packet *p, uint8_t *pktdata, int pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
return PacketCopyDataOffset(p, 0, pktdata, pktlen);
}
/**
* \brief Setup a pseudo packet (tunnel)
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketTunnelPktSetup(ThreadVars *tv, DecodeThreadVars *dtv, Packet *parent,
uint8_t *pkt, uint16_t len, uint8_t proto, PacketQueue *pq)
{
int ret;
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* copy packet and set lenght, proto */
PacketCopyData(p, pkt, len);
p->recursion_level = parent->recursion_level + 1;
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
ret = DecodeTunnel(tv, dtv, p, GET_PKT_DATA(p),
GET_PKT_LEN(p), pq, proto);
if (unlikely(ret != TM_ECODE_OK)) {
TmqhOutputPacketpool(tv, p);
SCReturnPtr(NULL, "Packet");
}
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(p);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
SCReturnPtr(p, "Packet");
}
/**
* \brief Setup a pseudo packet (reassembled frags)
*
* Difference with PacketPseudoPktSetup is that this func doesn't increment
* the recursion level. It needs to be on the same level as the frags because
* we run the flow engine against this and we need to get the same flow.
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketDefragPktSetup(Packet *parent, uint8_t *pkt, uint16_t len, uint8_t proto)
{
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* copy packet and set lenght, proto */
PacketCopyData(p, pkt, len);
p->recursion_level = parent->recursion_level; /* NOT incremented */
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
SCReturnPtr(p, "Packet");
}
/**
* \brief inform defrag "parent" that a pseudo packet is
* now assosiated to it.
*/
void PacketDefragPktSetupParent(Packet *parent)
{
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(parent);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
}
void DecodeRegisterPerfCounters(DecodeThreadVars *dtv, ThreadVars *tv)
{
/* register counters */
dtv->counter_pkts = SCPerfTVRegisterCounter("decoder.pkts", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_bytes = SCPerfTVRegisterCounter("decoder.bytes", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_invalid = SCPerfTVRegisterCounter("decoder.invalid", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_ipv4 = SCPerfTVRegisterCounter("decoder.ipv4", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_ipv6 = SCPerfTVRegisterCounter("decoder.ipv6", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_eth = SCPerfTVRegisterCounter("decoder.ethernet", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_raw = SCPerfTVRegisterCounter("decoder.raw", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_sll = SCPerfTVRegisterCounter("decoder.sll", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_tcp = SCPerfTVRegisterCounter("decoder.tcp", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_udp = SCPerfTVRegisterCounter("decoder.udp", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_sctp = SCPerfTVRegisterCounter("decoder.sctp", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_icmpv4 = SCPerfTVRegisterCounter("decoder.icmpv4", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_icmpv6 = SCPerfTVRegisterCounter("decoder.icmpv6", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_ppp = SCPerfTVRegisterCounter("decoder.ppp", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_pppoe = SCPerfTVRegisterCounter("decoder.pppoe", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_gre = SCPerfTVRegisterCounter("decoder.gre", tv,
SC_PERF_TYPE_UINT64, "NULL");
16 years ago
dtv->counter_vlan = SCPerfTVRegisterCounter("decoder.vlan", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_teredo = SCPerfTVRegisterCounter("decoder.teredo", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_ipv4inipv6 = SCPerfTVRegisterCounter("decoder.ipv4_in_ipv6", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_ipv6inipv6 = SCPerfTVRegisterCounter("decoder.ipv6_in_ipv6", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_avg_pkt_size = SCPerfTVRegisterAvgCounter("decoder.avg_pkt_size", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_max_pkt_size = SCPerfTVRegisterMaxCounter("decoder.max_pkt_size", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv4_fragments =
SCPerfTVRegisterCounter("defrag.ipv4.fragments", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv4_reassembled =
SCPerfTVRegisterCounter("defrag.ipv4.reassembled", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv4_timeouts =
SCPerfTVRegisterCounter("defrag.ipv4.timeouts", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv6_fragments =
SCPerfTVRegisterCounter("defrag.ipv6.fragments", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv6_reassembled =
SCPerfTVRegisterCounter("defrag.ipv6.reassembled", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_ipv6_timeouts =
SCPerfTVRegisterCounter("defrag.ipv6.timeouts", tv,
SC_PERF_TYPE_UINT64, "NULL");
dtv->counter_defrag_max_hit =
SCPerfTVRegisterCounter("defrag.max_frag_hits", tv,
SC_PERF_TYPE_UINT64, "NULL");
return;
}
/**
* \brief Debug print function for printing addresses
*
* \param Address object
*
* \todo IPv6
*/
void AddressDebugPrint(Address *a)
{
if (a == NULL)
return;
switch (a->family) {
case AF_INET:
{
char s[16];
PrintInet(AF_INET, (const void *)&a->addr_data32[0], s, sizeof(s));
SCLogDebug("%s", s);
break;
}
}
}
/** \brief Alloc and setup DecodeThreadVars */
DecodeThreadVars *DecodeThreadVarsAlloc()
{
DecodeThreadVars *dtv = NULL;
if ( (dtv = SCMalloc(sizeof(DecodeThreadVars))) == NULL)
return NULL;
memset(dtv, 0, sizeof(DecodeThreadVars));
/* initialize UDP app layer code */
AlpProtoFinalize2Thread(&dtv->udp_dp_ctx);
/** set config defaults */
int vlanbool = 0;
if ((ConfGetBool("vlan.use-for-tracking", &vlanbool)) == 1 && vlanbool == 0) {
dtv->vlan_disabled = 1;
}
SCLogDebug("vlan tracking is %s", dtv->vlan_disabled == 0 ? "enabled" : "disabled");
return dtv;
}
/**
* \brief Set data for Packet and set length when zeo copy is used
*
* \param Pointer to the Packet to modify
* \param Pointer to the data
* \param Length of the data
*/
inline int PacketSetData(Packet *p, uint8_t *pktdata, int pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
if (unlikely(!pktdata)) {
return -1;
}
p->ext_pkt = pktdata;
p->flags |= PKT_ZERO_COPY;
return 0;
}
const char *PktSrcToString(enum PktSrcEnum pkt_src)
{
char *pkt_src_str = "<unknown>";
switch (pkt_src) {
case PKT_SRC_WIRE:
pkt_src_str = "wire/pcap";
break;
case PKT_SRC_DECODER_GRE:
pkt_src_str = "gre tunnel";
break;
case PKT_SRC_DECODER_IPV4:
pkt_src_str = "ipv4 tunnel";
break;
case PKT_SRC_DECODER_IPV6:
pkt_src_str = "ipv6 tunnel";
break;
case PKT_SRC_DECODER_TEREDO:
pkt_src_str = "teredo tunnel";
break;
case PKT_SRC_DEFRAG:
pkt_src_str = "defrag";
break;
case PKT_SRC_STREAM_TCP_STREAM_END_PSEUDO:
pkt_src_str = "stream";
break;
case PKT_SRC_FFR_V2:
pkt_src_str = "stream (flow timeout)";
break;
case PKT_SRC_FFR_SHUTDOWN:
pkt_src_str = "stream (engine shutdown)";
break;
}
return pkt_src_str;
}
/**
* @}
*/