You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-runmodes.c

762 lines
26 KiB
C

/* Copyright (C) 2011 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Eric Leblond <eric@regit.org>
*
* Helper function for runmode.
*
*/
#include "suricata-common.h"
#include "config.h"
#include "tm-threads.h"
#include "conf.h"
#include "runmodes.h"
#include "runmode-af-packet.h"
#include "log-httplog.h"
#include "output.h"
#include "detect-engine-mpm.h"
#include "alert-fastlog.h"
#include "alert-prelude.h"
#include "alert-unified2-alert.h"
#include "alert-debuglog.h"
#include "util-debug.h"
#include "util-time.h"
#include "util-cpu.h"
#include "util-affinity.h"
#include "util-device.h"
#include "util-runmodes.h"
/** set to true if flow engine and stream engine run in different
* threads. */
static int runmode_flow_stream_async = 0;
void RunmodeSetFlowStreamAsync(void)
{
runmode_flow_stream_async = 1;
}
int RunmodeGetFlowStreamAsync(void)
{
return runmode_flow_stream_async;
}
/** \brief create a queue string for autofp to pass to
* the flow queue handler.
*
* The string will be "pickup1,pickup2,pickup3\0"
*/
char *RunmodeAutoFpCreatePickupQueuesString(int n)
{
char *queues = NULL;
/* 13 because pickup12345, = 12 + \0 */
size_t queues_size = n * 13;
int thread;
char qname[TM_QUEUE_NAME_MAX];
queues = SCMalloc(queues_size);
if (unlikely(queues == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "failed to alloc queues buffer: %s", strerror(errno));
return NULL;
}
memset(queues, 0x00, queues_size);
for (thread = 0; thread < n; thread++) {
if (strlen(queues) > 0)
strlcat(queues, ",", queues_size);
snprintf(qname, sizeof(qname), "pickup%"PRIu16, thread+1);
strlcat(queues, qname, queues_size);
}
SCLogDebug("%d %"PRIuMAX", queues %s", n, (uintmax_t)queues_size, queues);
return queues;
}
/**
* \param de_ctx detection engine, can be NULL
*/
int RunModeSetLiveCaptureAutoFp(DetectEngineCtx *de_ctx,
ConfigIfaceParserFunc ConfigParser,
ConfigIfaceThreadsCountFunc ModThreadsCount,
char *recv_mod_name,
char *decode_mod_name, char *thread_name,
const char *live_dev)
{
char tname[TM_THREAD_NAME_MAX];
char qname[TM_QUEUE_NAME_MAX];
char *queues = NULL;
int thread = 0;
/* Available cpus */
uint16_t ncpus = UtilCpuGetNumProcessorsOnline();
int nlive = LiveGetDeviceCount();
int thread_max = TmThreadGetNbThreads(DETECT_CPU_SET);
/* always create at least one thread */
if (thread_max == 0)
thread_max = ncpus * threading_detect_ratio;
if (thread_max < 1)
thread_max = 1;
RunmodeSetFlowStreamAsync();
queues = RunmodeAutoFpCreatePickupQueuesString(thread_max);
if (queues == NULL) {
SCLogError(SC_ERR_RUNMODE, "RunmodeAutoFpCreatePickupQueuesString failed");
exit(EXIT_FAILURE);
}
if ((nlive <= 1) && (live_dev != NULL)) {
void *aconf;
int threads_count;
SCLogDebug("live_dev %s", live_dev);
aconf = ConfigParser(live_dev);
if (aconf == NULL) {
SCLogError(SC_ERR_RUNMODE, "Failed to allocate config for %s (%d)",
live_dev, thread);
exit(EXIT_FAILURE);
}
threads_count = ModThreadsCount(aconf);
SCLogInfo("Going to use %" PRId32 " %s receive thread(s)",
threads_count, recv_mod_name);
/* create the threads */
for (thread = 0; thread < threads_count; thread++) {
snprintf(tname, sizeof(tname), "%s%"PRIu16, thread_name, thread+1);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate thread name");
exit(EXIT_FAILURE);
}
ThreadVars *tv_receive =
TmThreadCreatePacketHandler(thread_name,
"packetpool", "packetpool",
queues, "flow", "pktacqloop");
if (tv_receive == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
TmModule *tm_module = TmModuleGetByName(recv_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE,
"TmModuleGetByName failed for %s",
recv_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, aconf);
tm_module = TmModuleGetByName(decode_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE,
"TmModuleGetByName %s failed", decode_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, NULL);
TmThreadSetCPU(tv_receive, RECEIVE_CPU_SET);
if (TmThreadSpawn(tv_receive) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
} else { /* Multiple input device */
SCLogInfo("Using %d live device(s).", nlive);
int lthread;
for (lthread = 0; lthread < nlive; lthread++) {
char *live_dev = LiveGetDeviceName(lthread);
void *aconf;
int threads_count;
if (live_dev == NULL) {
SCLogError(SC_ERR_RUNMODE, "Failed to lookup live dev %d", lthread);
exit(EXIT_FAILURE);
}
SCLogDebug("live_dev %s", live_dev);
aconf = ConfigParser(live_dev);
if (aconf == NULL) {
SCLogError(SC_ERR_RUNMODE, "Multidev: Failed to allocate config for %s (%d)",
live_dev, lthread);
exit(EXIT_FAILURE);
}
threads_count = ModThreadsCount(aconf);
for (thread = 0; thread < threads_count; thread++) {
snprintf(tname, sizeof(tname), "%s%s%"PRIu16, thread_name,
live_dev, thread+1);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate thread name");
exit(EXIT_FAILURE);
}
ThreadVars *tv_receive =
TmThreadCreatePacketHandler(thread_name,
"packetpool", "packetpool",
queues, "flow", "pktacqloop");
if (tv_receive == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
TmModule *tm_module = TmModuleGetByName(recv_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName failed for %s", recv_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, aconf);
tm_module = TmModuleGetByName(decode_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName %s failed", decode_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, NULL);
TmThreadSetCPU(tv_receive, RECEIVE_CPU_SET);
if (TmThreadSpawn(tv_receive) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
}
}
for (thread = 0; thread < thread_max; thread++) {
snprintf(tname, sizeof(tname), "Detect%"PRIu16, thread+1);
snprintf(qname, sizeof(qname), "pickup%"PRIu16, thread+1);
SCLogDebug("tname %s, qname %s", tname, qname);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate thread name");
exit(EXIT_FAILURE);
}
ThreadVars *tv_detect_ncpu =
TmThreadCreatePacketHandler(thread_name,
qname, "flow",
"packetpool", "packetpool",
"varslot");
if (tv_detect_ncpu == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
TmModule *tm_module = TmModuleGetByName("StreamTcp");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName StreamTcp failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_detect_ncpu, tm_module, NULL);
if (de_ctx != NULL) {
tm_module = TmModuleGetByName("Detect");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName Detect failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppendDelayed(tv_detect_ncpu, tm_module,
(void *)de_ctx, de_ctx->delayed_detect);
}
TmThreadSetCPU(tv_detect_ncpu, DETECT_CPU_SET);
char *thread_group_name = SCStrdup("Detect");
if (unlikely(thread_group_name == NULL)) {
SCLogError(SC_ERR_RUNMODE, "Error allocating memory");
exit(EXIT_FAILURE);
}
tv_detect_ncpu->thread_group_name = thread_group_name;
tm_module = TmModuleGetByName("RespondReject");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName RespondReject failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_detect_ncpu, tm_module, NULL);
/* add outputs as well */
SetupOutputs(tv_detect_ncpu);
if (TmThreadSpawn(tv_detect_ncpu) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
SCFree(queues);
return 0;
}
/**
* \param de_ctx detection engine, can be NULL
*/
static int RunModeSetLiveCaptureWorkersForDevice(DetectEngineCtx *de_ctx,
ConfigIfaceThreadsCountFunc ModThreadsCount,
char *recv_mod_name,
char *decode_mod_name, char *thread_name,
const char *live_dev, void *aconf,
unsigned char single_mode)
{
int thread;
int threads_count;
if (single_mode) {
threads_count = 1;
} else {
threads_count = ModThreadsCount(aconf);
SCLogInfo("Going to use %" PRId32 " thread(s)", threads_count);
}
/* create the threads */
for (thread = 0; thread < threads_count; thread++) {
char tname[TM_THREAD_NAME_MAX];
char *n_thread_name = NULL;
ThreadVars *tv = NULL;
TmModule *tm_module = NULL;
if (single_mode) {
snprintf(tname, sizeof(tname), "%s", thread_name);
} else {
snprintf(tname, sizeof(tname), "%s%s%"PRIu16,
thread_name, live_dev, thread+1);
}
n_thread_name = SCStrdup(tname);
if (unlikely(n_thread_name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate thread name");
exit(EXIT_FAILURE);
}
tv = TmThreadCreatePacketHandler(n_thread_name,
"packetpool", "packetpool",
"packetpool", "packetpool",
"pktacqloop");
if (tv == NULL) {
SCLogError(SC_ERR_THREAD_CREATE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
tm_module = TmModuleGetByName(recv_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_INVALID_VALUE, "TmModuleGetByName failed for %s", recv_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, aconf);
tm_module = TmModuleGetByName(decode_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_INVALID_VALUE, "TmModuleGetByName %s failed", decode_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
tm_module = TmModuleGetByName("StreamTcp");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName StreamTcp failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
if (de_ctx != NULL) {
tm_module = TmModuleGetByName("Detect");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName Detect failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppendDelayed(tv, tm_module,
(void *)de_ctx, de_ctx->delayed_detect);
}
tm_module = TmModuleGetByName("RespondReject");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName RespondReject failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
SetupOutputs(tv);
TmThreadSetCPU(tv, DETECT_CPU_SET);
if (TmThreadSpawn(tv) != TM_ECODE_OK) {
SCLogError(SC_ERR_THREAD_SPAWN, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
return 0;
}
int RunModeSetLiveCaptureWorkers(DetectEngineCtx *de_ctx,
ConfigIfaceParserFunc ConfigParser,
ConfigIfaceThreadsCountFunc ModThreadsCount,
char *recv_mod_name,
char *decode_mod_name, char *thread_name,
const char *live_dev)
{
int nlive = LiveGetDeviceCount();
void *aconf;
int ldev;
for (ldev = 0; ldev < nlive; ldev++) {
char *live_dev_c = NULL;
if (live_dev != NULL) {
aconf = ConfigParser(live_dev);
live_dev_c = SCStrdup(live_dev);
if (unlikely(live_dev_c == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate interface name");
exit(EXIT_FAILURE);
}
} else {
live_dev_c = LiveGetDeviceName(ldev);
aconf = ConfigParser(live_dev_c);
}
RunModeSetLiveCaptureWorkersForDevice(de_ctx,
ModThreadsCount,
recv_mod_name,
decode_mod_name,
thread_name,
live_dev_c,
aconf,
0);
}
return 0;
}
int RunModeSetLiveCaptureSingle(DetectEngineCtx *de_ctx,
ConfigIfaceParserFunc ConfigParser,
ConfigIfaceThreadsCountFunc ModThreadsCount,
char *recv_mod_name,
char *decode_mod_name, char *thread_name,
const char *live_dev)
{
int nlive = LiveGetDeviceCount();
void *aconf;
if (nlive > 1) {
SCLogError(SC_ERR_RUNMODE,
"Can't use single runmode with multiple device");
exit(EXIT_FAILURE);
}
if (live_dev != NULL) {
aconf = ConfigParser(live_dev);
} else {
char *live_dev_c = LiveGetDeviceName(0);
aconf = ConfigParser(live_dev_c);
/* \todo Set threads number in config to 1 */
}
return RunModeSetLiveCaptureWorkersForDevice(de_ctx,
ModThreadsCount,
recv_mod_name,
decode_mod_name,
thread_name,
live_dev,
aconf,
1);
}
/**
* \param de_ctx detection engine, can be NULL
*/
int RunModeSetIPSAutoFp(DetectEngineCtx *de_ctx,
ConfigIPSParserFunc ConfigParser,
char *recv_mod_name,
char *verdict_mod_name,
char *decode_mod_name)
{
SCEnter();
char tname[TM_THREAD_NAME_MAX];
char qname[TM_QUEUE_NAME_MAX];
TmModule *tm_module ;
char *cur_queue = NULL;
char *queues = NULL;
int thread;
/* Available cpus */
uint16_t ncpus = UtilCpuGetNumProcessorsOnline();
int nqueue = LiveGetDeviceCount();
int thread_max = TmThreadGetNbThreads(DETECT_CPU_SET);
/* always create at least one thread */
if (thread_max == 0)
thread_max = ncpus * threading_detect_ratio;
if (thread_max < 1)
thread_max = 1;
RunmodeSetFlowStreamAsync();
queues = RunmodeAutoFpCreatePickupQueuesString(thread_max);
if (queues == NULL) {
SCLogError(SC_ERR_RUNMODE, "RunmodeAutoFpCreatePickupQueuesString failed");
exit(EXIT_FAILURE);
}
for (int i = 0; i < nqueue; i++) {
/* create the threads */
cur_queue = LiveGetDeviceName(i);
if (cur_queue == NULL) {
SCLogError(SC_ERR_RUNMODE, "invalid queue number");
exit(EXIT_FAILURE);
}
memset(tname, 0, sizeof(tname));
snprintf(tname, sizeof(tname), "Recv-Q%s", cur_queue);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_RUNMODE, "thread name creation failed");
exit(EXIT_FAILURE);
}
ThreadVars *tv_receive =
TmThreadCreatePacketHandler(thread_name,
"packetpool", "packetpool",
queues, "flow", "pktacqloop");
if (tv_receive == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
TmModule *tm_module = TmModuleGetByName(recv_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName failed for %s", recv_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, (void *) ConfigParser(i));
tm_module = TmModuleGetByName(decode_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName %s failed", decode_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_receive, tm_module, NULL);
TmThreadSetCPU(tv_receive, RECEIVE_CPU_SET);
if (TmThreadSpawn(tv_receive) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
for (thread = 0; thread < thread_max; thread++) {
snprintf(tname, sizeof(tname), "Detect%"PRIu16, thread+1);
snprintf(qname, sizeof(qname), "pickup%"PRIu16, thread+1);
SCLogDebug("tname %s, qname %s", tname, qname);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate thread name");
exit(EXIT_FAILURE);
}
ThreadVars *tv_detect_ncpu =
TmThreadCreatePacketHandler(thread_name,
qname, "flow",
"verdict-queue", "simple",
"varslot");
if (tv_detect_ncpu == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
TmModule *tm_module = TmModuleGetByName("StreamTcp");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName StreamTcp failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_detect_ncpu, tm_module, NULL);
if (de_ctx != NULL) {
tm_module = TmModuleGetByName("Detect");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName Detect failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppendDelayed(tv_detect_ncpu, tm_module,
(void *)de_ctx, de_ctx->delayed_detect);
}
TmThreadSetCPU(tv_detect_ncpu, DETECT_CPU_SET);
SetupOutputs(tv_detect_ncpu);
char *thread_group_name = SCStrdup("Detect");
if (unlikely(thread_group_name == NULL)) {
SCLogError(SC_ERR_RUNMODE, "Error allocating memory");
exit(EXIT_FAILURE);
}
tv_detect_ncpu->thread_group_name = thread_group_name;
if (TmThreadSpawn(tv_detect_ncpu) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
/* create the threads */
for (int i = 0; i < nqueue; i++) {
memset(tname, 0, sizeof(tname));
snprintf(tname, sizeof(tname), "Verdict%"PRIu16, i);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_RUNMODE, "Error allocating memory");
exit(EXIT_FAILURE);
}
ThreadVars *tv_verdict =
TmThreadCreatePacketHandler(thread_name,
"verdict-queue", "simple",
"packetpool", "packetpool",
"varslot");
if (tv_verdict == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
tm_module = TmModuleGetByName(verdict_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName %s failed", verdict_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_verdict, tm_module, (void *)ConfigParser(i));
tm_module = TmModuleGetByName("RespondReject");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName for RespondReject failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv_verdict, tm_module, NULL);
TmThreadSetCPU(tv_verdict, VERDICT_CPU_SET);
if (TmThreadSpawn(tv_verdict) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
SCFree(queues);
return 0;
}
/**
* \param de_ctx detection engine, can be NULL
*/
int RunModeSetIPSWorker(DetectEngineCtx *de_ctx,
ConfigIPSParserFunc ConfigParser,
char *recv_mod_name,
char *verdict_mod_name,
char *decode_mod_name)
{
char tname[TM_THREAD_NAME_MAX];
ThreadVars *tv = NULL;
TmModule *tm_module = NULL;
char *cur_queue = NULL;
int nqueue = LiveGetDeviceCount();
for (int i = 0; i < nqueue; i++) {
/* create the threads */
cur_queue = LiveGetDeviceName(i);
if (cur_queue == NULL) {
SCLogError(SC_ERR_RUNMODE, "invalid queue number");
exit(EXIT_FAILURE);
}
memset(tname, 0, sizeof(tname));
snprintf(tname, sizeof(tname), "Worker-Q%s", cur_queue);
char *thread_name = SCStrdup(tname);
if (unlikely(thread_name == NULL)) {
SCLogError(SC_ERR_RUNMODE, "Error allocating memory");
exit(EXIT_FAILURE);
}
tv = TmThreadCreatePacketHandler(thread_name,
"packetpool", "packetpool",
"packetpool", "packetpool",
"pktacqloop");
if (tv == NULL) {
SCLogError(SC_ERR_THREAD_CREATE, "TmThreadsCreate failed");
exit(EXIT_FAILURE);
}
tm_module = TmModuleGetByName(recv_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_INVALID_VALUE, "TmModuleGetByName failed for %s", recv_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, (void *) ConfigParser(i));
tm_module = TmModuleGetByName(decode_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_INVALID_VALUE, "TmModuleGetByName %s failed", decode_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
tm_module = TmModuleGetByName("StreamTcp");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName StreamTcp failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
if (de_ctx != NULL) {
tm_module = TmModuleGetByName("Detect");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName Detect failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppendDelayed(tv, tm_module,
(void *)de_ctx, de_ctx->delayed_detect);
}
tm_module = TmModuleGetByName(verdict_mod_name);
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName %s failed", verdict_mod_name);
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, (void *)de_ctx);
tm_module = TmModuleGetByName("RespondReject");
if (tm_module == NULL) {
SCLogError(SC_ERR_RUNMODE, "TmModuleGetByName for RespondReject failed");
exit(EXIT_FAILURE);
}
TmSlotSetFuncAppend(tv, tm_module, NULL);
SetupOutputs(tv);
TmThreadSetCPU(tv, DETECT_CPU_SET);
if (TmThreadSpawn(tv) != TM_ECODE_OK) {
SCLogError(SC_ERR_RUNMODE, "TmThreadSpawn failed");
exit(EXIT_FAILURE);
}
}
return 0;
}