You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/rust/src/ikev2/ikev2.rs

771 lines
29 KiB
Rust

/* Copyright (C) 2017-2018 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
// written by Pierre Chifflier <chifflier@wzdftpd.net>
use crate::ikev2::ipsec_parser::*;
use crate::ikev2::state::IKEV2ConnectionState;
use crate::core;
use crate::core::{AppProto,Flow,ALPROTO_UNKNOWN,ALPROTO_FAILED,STREAM_TOSERVER,STREAM_TOCLIENT};
use crate::applayer;
use crate::parser::*;
use std;
use std::ffi::{CStr,CString};
use crate::log::*;
use nom;
#[repr(u32)]
pub enum IKEV2Event {
MalformedData = 0,
NoEncryption,
WeakCryptoEnc,
WeakCryptoPRF,
WeakCryptoDH,
WeakCryptoAuth,
WeakCryptoNoDH,
WeakCryptoNoAuth,
InvalidProposal,
UnknownProposal,
}
impl IKEV2Event {
fn from_i32(value: i32) -> Option<IKEV2Event> {
match value {
0 => Some(IKEV2Event::MalformedData),
1 => Some(IKEV2Event::NoEncryption),
2 => Some(IKEV2Event::WeakCryptoEnc),
3 => Some(IKEV2Event::WeakCryptoPRF),
4 => Some(IKEV2Event::WeakCryptoDH),
5 => Some(IKEV2Event::WeakCryptoAuth),
6 => Some(IKEV2Event::WeakCryptoNoDH),
7 => Some(IKEV2Event::WeakCryptoNoAuth),
8 => Some(IKEV2Event::InvalidProposal),
9 => Some(IKEV2Event::UnknownProposal),
_ => None,
}
}
}
pub struct IKEV2State {
/// List of transactions for this session
transactions: Vec<IKEV2Transaction>,
/// tx counter for assigning incrementing id's to tx's
tx_id: u64,
/// The connection state
connection_state: IKEV2ConnectionState,
/// The transforms proposed by the initiator
pub client_transforms : Vec<Vec<IkeV2Transform>>,
/// The transforms selected by the responder
pub server_transforms : Vec<Vec<IkeV2Transform>>,
/// The encryption algorithm selected by the responder
pub alg_enc: IkeTransformEncType,
/// The authentication algorithm selected by the responder
pub alg_auth: IkeTransformAuthType,
/// The PRF algorithm selected by the responder
pub alg_prf: IkeTransformPRFType,
/// The Diffie-Hellman algorithm selected by the responder
pub alg_dh: IkeTransformDHType,
/// The extended sequence numbers parameter selected by the responder
pub alg_esn: IkeTransformESNType,
/// The Diffie-Hellman group from the server KE message, if present.
pub dh_group: IkeTransformDHType,
}
#[derive(Debug)]
pub struct IKEV2Transaction {
/// The IKEV2 reference ID
pub xid: u64,
pub hdr: IkeV2Header,
pub payload_types: Vec<IkePayloadType>,
pub notify_types: Vec<NotifyType>,
/// IKEv2 errors seen during exchange
pub errors: u32,
/// The internal transaction id
id: u64,
/// The detection engine state, if present
de_state: Option<*mut core::DetectEngineState>,
/// The events associated with this transaction
events: *mut core::AppLayerDecoderEvents,
logged: applayer::LoggerFlags,
}
impl IKEV2State {
pub fn new() -> IKEV2State {
IKEV2State{
transactions: Vec::new(),
tx_id: 0,
connection_state: IKEV2ConnectionState::Init,
dh_group: IkeTransformDHType::None,
client_transforms: Vec::new(),
server_transforms: Vec::new(),
alg_enc: IkeTransformEncType::ENCR_NULL,
alg_auth: IkeTransformAuthType::NONE,
alg_prf: IkeTransformPRFType::PRF_NULL,
alg_dh: IkeTransformDHType::None,
alg_esn: IkeTransformESNType::NoESN,
}
}
}
impl IKEV2State {
/// Parse an IKEV2 request message
///
/// Returns The number of messages parsed, or -1 on error
fn parse(&mut self, i: &[u8], direction: u8) -> i32 {
match parse_ikev2_header(i) {
Ok((rem,ref hdr)) => {
if rem.len() == 0 && hdr.length == 28 {
return 1;
}
// Rule 0: check version
if hdr.maj_ver != 2 || hdr.min_ver != 0 {
self.set_event(IKEV2Event::MalformedData);
return -1;
}
if hdr.init_spi == 0 {
self.set_event(IKEV2Event::MalformedData);
return -1;
}
// only analyse IKE_SA, other payloads are encrypted
if hdr.exch_type != IkeExchangeType::IKE_SA_INIT {
return 0;
}
let mut tx = self.new_tx();
// use init_spi as transaction identifier
tx.xid = hdr.init_spi;
tx.hdr = (*hdr).clone();
self.transactions.push(tx);
let mut payload_types = Vec::new();
let mut errors = 0;
let mut notify_types = Vec::new();
match parse_ikev2_payload_list(rem,hdr.next_payload) {
Ok((_,Ok(ref p))) => {
for payload in p {
payload_types.push(payload.hdr.next_payload_type);
match payload.content {
IkeV2PayloadContent::Dummy => (),
IkeV2PayloadContent::SA(ref prop) => {
// if hdr.flags & IKEV2_FLAG_INITIATOR != 0 {
self.add_proposals(prop, direction);
// }
},
IkeV2PayloadContent::KE(ref kex) => {
SCLogDebug!("KEX {:?}", kex.dh_group);
if direction == STREAM_TOCLIENT {
self.dh_group = kex.dh_group;
}
},
IkeV2PayloadContent::Nonce(ref n) => {
SCLogDebug!("Nonce: {:?}", n);
},
IkeV2PayloadContent::Notify(ref n) => {
SCLogDebug!("Notify: {:?}", n);
if n.notify_type.is_error() {
errors += 1;
}
notify_types.push(n.notify_type);
},
// XXX CertificateRequest
// XXX Certificate
// XXX Authentication
// XXX TSi
// XXX TSr
// XXX IDr
_ => {
SCLogDebug!("Unknown payload content {:?}", payload.content);
},
}
self.connection_state = self.connection_state.advance(payload);
if let Some(tx) = self.transactions.last_mut() {
// borrow back tx to update it
tx.payload_types.append(&mut payload_types);
tx.errors = errors;
tx.notify_types.append(&mut notify_types);
}
};
},
e => { SCLogDebug!("parse_ikev2_payload_with_type: {:?}",e); () },
}
1
},
Err(nom::Err::Incomplete(_)) => {
SCLogDebug!("Insufficient data while parsing IKEV2 data");
self.set_event(IKEV2Event::MalformedData);
-1
},
Err(_) => {
SCLogDebug!("Error while parsing IKEV2 data");
self.set_event(IKEV2Event::MalformedData);
-1
},
}
}
fn free(&mut self) {
// All transactions are freed when the `transactions` object is freed.
// But let's be explicit
self.transactions.clear();
}
fn new_tx(&mut self) -> IKEV2Transaction {
self.tx_id += 1;
IKEV2Transaction::new(self.tx_id)
}
fn get_tx_by_id(&mut self, tx_id: u64) -> Option<&IKEV2Transaction> {
self.transactions.iter().find(|&tx| tx.id == tx_id + 1)
}
fn free_tx(&mut self, tx_id: u64) {
let tx = self.transactions.iter().position(|ref tx| tx.id == tx_id + 1);
debug_assert!(tx != None);
if let Some(idx) = tx {
let _ = self.transactions.remove(idx);
}
}
/// Set an event. The event is set on the most recent transaction.
fn set_event(&mut self, event: IKEV2Event) {
if let Some(tx) = self.transactions.last_mut() {
let ev = event as u8;
core::sc_app_layer_decoder_events_set_event_raw(&mut tx.events, ev);
} else {
SCLogDebug!("IKEv2: trying to set event {} on non-existing transaction", event as u32);
}
}
fn add_proposals(&mut self, prop: &Vec<IkeV2Proposal>, direction: u8) {
for ref p in prop {
let transforms : Vec<IkeV2Transform> = p.transforms.iter().map(|x| x.into()).collect();
// Rule 1: warn on weak or unknown transforms
for xform in &transforms {
match *xform {
IkeV2Transform::Encryption(ref enc) => {
match *enc {
IkeTransformEncType::ENCR_DES_IV64 |
IkeTransformEncType::ENCR_DES |
IkeTransformEncType::ENCR_3DES |
IkeTransformEncType::ENCR_RC5 |
IkeTransformEncType::ENCR_IDEA |
IkeTransformEncType::ENCR_CAST |
IkeTransformEncType::ENCR_BLOWFISH |
IkeTransformEncType::ENCR_3IDEA |
IkeTransformEncType::ENCR_DES_IV32 |
IkeTransformEncType::ENCR_NULL => {
SCLogDebug!("Weak Encryption: {:?}", enc);
// XXX send event only if direction == STREAM_TOCLIENT ?
self.set_event(IKEV2Event::WeakCryptoEnc);
},
_ => (),
}
},
IkeV2Transform::PRF(ref prf) => {
match *prf {
IkeTransformPRFType::PRF_NULL => {
SCLogDebug!("'Null' PRF transform proposed");
self.set_event(IKEV2Event::InvalidProposal);
},
IkeTransformPRFType::PRF_HMAC_MD5 |
IkeTransformPRFType::PRF_HMAC_SHA1 => {
SCLogDebug!("Weak PRF: {:?}", prf);
self.set_event(IKEV2Event::WeakCryptoPRF);
},
_ => (),
}
},
IkeV2Transform::Auth(ref auth) => {
match *auth {
IkeTransformAuthType::NONE => {
// Note: this could be expected with an AEAD encription alg.
// See rule 4
()
},
IkeTransformAuthType::AUTH_HMAC_MD5_96 |
IkeTransformAuthType::AUTH_HMAC_SHA1_96 |
IkeTransformAuthType::AUTH_DES_MAC |
IkeTransformAuthType::AUTH_KPDK_MD5 |
IkeTransformAuthType::AUTH_AES_XCBC_96 |
IkeTransformAuthType::AUTH_HMAC_MD5_128 |
IkeTransformAuthType::AUTH_HMAC_SHA1_160 => {
SCLogDebug!("Weak auth: {:?}", auth);
self.set_event(IKEV2Event::WeakCryptoAuth);
},
_ => (),
}
},
IkeV2Transform::DH(ref dh) => {
match *dh {
IkeTransformDHType::None => {
SCLogDebug!("'None' DH transform proposed");
self.set_event(IKEV2Event::InvalidProposal);
},
IkeTransformDHType::Modp768 |
IkeTransformDHType::Modp1024 |
IkeTransformDHType::Modp1024s160 |
IkeTransformDHType::Modp1536 => {
SCLogDebug!("Weak DH: {:?}", dh);
self.set_event(IKEV2Event::WeakCryptoDH);
},
_ => (),
}
},
IkeV2Transform::Unknown(tx_type,tx_id) => {
SCLogDebug!("Unknown proposal: type={:?}, id={}", tx_type, tx_id);
self.set_event(IKEV2Event::UnknownProposal);
},
_ => (),
}
}
// Rule 2: check if no DH was proposed
if ! transforms.iter().any(|x| {
match *x {
IkeV2Transform::DH(_) => true,
_ => false
}
})
{
SCLogDebug!("No DH transform found");
self.set_event(IKEV2Event::WeakCryptoNoDH);
}
// Rule 3: check if proposing AH ([RFC7296] section 3.3.1)
if p.protocol_id == ProtocolID::AH {
SCLogDebug!("Proposal uses protocol AH - no confidentiality");
self.set_event(IKEV2Event::NoEncryption);
}
// Rule 4: lack of integrity is accepted only if using an AEAD proposal
// Look if no auth was proposed, including if proposal is Auth::None
if ! transforms.iter().any(|x| {
match *x {
IkeV2Transform::Auth(IkeTransformAuthType::NONE) => false,
IkeV2Transform::Auth(_) => true,
_ => false,
}
})
{
if ! transforms.iter().any(|x| {
match *x {
IkeV2Transform::Encryption(ref enc) => enc.is_aead(),
_ => false
}
}) {
SCLogDebug!("No integrity transform found");
self.set_event(IKEV2Event::WeakCryptoNoAuth);
}
}
// Finally
if direction == STREAM_TOCLIENT {
transforms.iter().for_each(|t|
match *t {
IkeV2Transform::Encryption(ref e) => self.alg_enc = *e,
IkeV2Transform::Auth(ref a) => self.alg_auth = *a,
IkeV2Transform::PRF(ref p) => self.alg_prf = *p,
IkeV2Transform::DH(ref dh) => self.alg_dh = *dh,
IkeV2Transform::ESN(ref e) => self.alg_esn = *e,
_ => (),
});
SCLogDebug!("Selected transforms: {:?}", transforms);
self.server_transforms.push(transforms);
} else {
SCLogDebug!("Proposed transforms: {:?}", transforms);
self.client_transforms.push(transforms);
}
}
}
}
impl IKEV2Transaction {
pub fn new(id: u64) -> IKEV2Transaction {
IKEV2Transaction {
xid: 0,
hdr: IkeV2Header {
init_spi: 0,
resp_spi: 0,
next_payload: IkePayloadType::NoNextPayload,
maj_ver: 0,
min_ver: 0,
exch_type: IkeExchangeType(0),
flags: 0,
msg_id: 0,
length: 0,
},
payload_types: Vec::new(),
notify_types: Vec::new(),
errors: 0,
id: id,
de_state: None,
events: std::ptr::null_mut(),
logged: applayer::LoggerFlags::new(),
}
}
fn free(&mut self) {
if self.events != std::ptr::null_mut() {
core::sc_app_layer_decoder_events_free_events(&mut self.events);
}
if let Some(state) = self.de_state {
core::sc_detect_engine_state_free(state);
}
}
}
impl Drop for IKEV2Transaction {
fn drop(&mut self) {
self.free();
}
}
/// Returns *mut IKEV2State
#[no_mangle]
pub extern "C" fn rs_ikev2_state_new() -> *mut std::os::raw::c_void {
let state = IKEV2State::new();
let boxed = Box::new(state);
return unsafe{std::mem::transmute(boxed)};
}
/// Params:
/// - state: *mut IKEV2State as void pointer
#[no_mangle]
pub extern "C" fn rs_ikev2_state_free(state: *mut std::os::raw::c_void) {
// Just unbox...
let mut ikev2_state: Box<IKEV2State> = unsafe{std::mem::transmute(state)};
ikev2_state.free();
}
#[no_mangle]
pub extern "C" fn rs_ikev2_parse_request(_flow: *const core::Flow,
state: *mut std::os::raw::c_void,
_pstate: *mut std::os::raw::c_void,
input: *const u8,
input_len: u32,
_data: *const std::os::raw::c_void,
_flags: u8) -> i32 {
let buf = build_slice!(input,input_len as usize);
let state = cast_pointer!(state,IKEV2State);
state.parse(buf, STREAM_TOSERVER)
}
#[no_mangle]
pub extern "C" fn rs_ikev2_parse_response(_flow: *const core::Flow,
state: *mut std::os::raw::c_void,
pstate: *mut std::os::raw::c_void,
input: *const u8,
input_len: u32,
_data: *const std::os::raw::c_void,
_flags: u8) -> i32 {
let buf = build_slice!(input,input_len as usize);
let state = cast_pointer!(state,IKEV2State);
let res = state.parse(buf, STREAM_TOCLIENT);
if state.connection_state == IKEV2ConnectionState::ParsingDone {
unsafe{
AppLayerParserStateSetFlag(pstate, APP_LAYER_PARSER_NO_INSPECTION |
APP_LAYER_PARSER_NO_REASSEMBLY |
APP_LAYER_PARSER_BYPASS_READY)
};
}
res
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_tx(state: *mut std::os::raw::c_void,
tx_id: u64)
-> *mut std::os::raw::c_void
{
let state = cast_pointer!(state,IKEV2State);
match state.get_tx_by_id(tx_id) {
Some(tx) => unsafe{std::mem::transmute(tx)},
None => std::ptr::null_mut(),
}
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_tx_count(state: *mut std::os::raw::c_void)
-> u64
{
let state = cast_pointer!(state,IKEV2State);
state.tx_id
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_tx_free(state: *mut std::os::raw::c_void,
tx_id: u64)
{
let state = cast_pointer!(state,IKEV2State);
state.free_tx(tx_id);
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_progress_completion_status(
_direction: u8)
-> std::os::raw::c_int
{
return 1;
}
#[no_mangle]
pub extern "C" fn rs_ikev2_tx_get_alstate_progress(_tx: *mut std::os::raw::c_void,
_direction: u8)
-> std::os::raw::c_int
{
1
}
#[no_mangle]
pub extern "C" fn rs_ikev2_tx_set_logged(_state: *mut std::os::raw::c_void,
tx: *mut std::os::raw::c_void,
logged: u32)
{
let tx = cast_pointer!(tx,IKEV2Transaction);
tx.logged.set(logged);
}
#[no_mangle]
pub extern "C" fn rs_ikev2_tx_get_logged(_state: *mut std::os::raw::c_void,
tx: *mut std::os::raw::c_void)
-> u32
{
let tx = cast_pointer!(tx,IKEV2Transaction);
return tx.logged.get();
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_set_tx_detect_state(
tx: *mut std::os::raw::c_void,
de_state: &mut core::DetectEngineState) -> std::os::raw::c_int
{
let tx = cast_pointer!(tx,IKEV2Transaction);
tx.de_state = Some(de_state);
0
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_tx_detect_state(
tx: *mut std::os::raw::c_void)
-> *mut core::DetectEngineState
{
let tx = cast_pointer!(tx,IKEV2Transaction);
match tx.de_state {
Some(ds) => ds,
None => std::ptr::null_mut(),
}
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_events(tx: *mut std::os::raw::c_void)
-> *mut core::AppLayerDecoderEvents
{
let tx = cast_pointer!(tx, IKEV2Transaction);
return tx.events;
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_event_info_by_id(event_id: std::os::raw::c_int,
event_name: *mut *const std::os::raw::c_char,
event_type: *mut core::AppLayerEventType)
-> i8
{
if let Some(e) = IKEV2Event::from_i32(event_id as i32) {
let estr = match e {
IKEV2Event::MalformedData => { "malformed_data\0" },
IKEV2Event::NoEncryption => { "no_encryption\0" },
IKEV2Event::WeakCryptoEnc => { "weak_crypto_enc\0" },
IKEV2Event::WeakCryptoPRF => { "weak_crypto_prf\0" },
IKEV2Event::WeakCryptoDH => { "weak_crypto_dh\0" },
IKEV2Event::WeakCryptoAuth => { "weak_crypto_auth\0" },
IKEV2Event::WeakCryptoNoDH => { "weak_crypto_nodh\0" },
IKEV2Event::WeakCryptoNoAuth => { "weak_crypto_noauth\0" },
IKEV2Event::InvalidProposal => { "invalid_proposal\0" },
IKEV2Event::UnknownProposal => { "unknown_proposal\0" },
};
unsafe{
*event_name = estr.as_ptr() as *const std::os::raw::c_char;
*event_type = core::APP_LAYER_EVENT_TYPE_TRANSACTION;
};
0
} else {
-1
}
}
#[no_mangle]
pub extern "C" fn rs_ikev2_state_get_event_info(event_name: *const std::os::raw::c_char,
event_id: *mut std::os::raw::c_int,
event_type: *mut core::AppLayerEventType)
-> std::os::raw::c_int
{
if event_name == std::ptr::null() { return -1; }
let c_event_name: &CStr = unsafe { CStr::from_ptr(event_name) };
let event = match c_event_name.to_str() {
Ok(s) => {
match s {
"malformed_data" => IKEV2Event::MalformedData as i32,
"no_encryption" => IKEV2Event::NoEncryption as i32,
"weak_crypto_enc" => IKEV2Event::WeakCryptoEnc as i32,
"weak_crypto_prf" => IKEV2Event::WeakCryptoPRF as i32,
"weak_crypto_auth" => IKEV2Event::WeakCryptoAuth as i32,
"weak_crypto_dh" => IKEV2Event::WeakCryptoDH as i32,
"weak_crypto_nodh" => IKEV2Event::WeakCryptoNoDH as i32,
"weak_crypto_noauth" => IKEV2Event::WeakCryptoNoAuth as i32,
"invalid_proposal" => IKEV2Event::InvalidProposal as i32,
"unknown_proposal" => IKEV2Event::UnknownProposal as i32,
_ => -1, // unknown event
}
},
Err(_) => -1, // UTF-8 conversion failed
};
unsafe{
*event_type = core::APP_LAYER_EVENT_TYPE_TRANSACTION;
*event_id = event as std::os::raw::c_int;
};
0
}
static mut ALPROTO_IKEV2 : AppProto = ALPROTO_UNKNOWN;
#[no_mangle]
proto-detect: improve midstream support When Suricata picks up a flow it assumes the first packet is toserver. In a perfect world without packet loss and where all sessions neatly start after Suricata itself started, this would be true. However, in reality we have to account for packet loss and Suricata starting to get packets for flows already active be for Suricata is (re)started. The protocol records on the wire would often be able to tell us more though. For example in SMB1 and SMB2 records there is a flag that indicates whether the record is a request or a response. This patch is enabling the procotol detection engine to utilize this information to 'reverse' the flow. There are three ways in which this is supported in this patch: 1. patterns for detection are registered per direction. If the proto was not recognized in the traffic direction, and midstream is enabled, the pattern set for the opposing direction is also evaluated. If that matches, the flow is considered to be in the wrong direction and is reversed. 2. probing parsers now have a way to feed back their understanding of the flow direction. They are now passed the direction as Suricata sees the traffic when calling the probing parsers. The parser can then see if its own observation matches that, and pass back it's own view to the caller. 3. a new pattern + probing parser set up: probing parsers can now be registered with a pattern, so that when the pattern matches the probing parser is called as well. The probing parser can then provide the protocol detection engine with the direction of the traffic. The process of reversing takes a multi step approach as well: a. reverse the current packets direction b. reverse most of the flows direction sensitive flags c. tag the flow as 'reversed'. This is because the 5 tuple is *not* reversed, since it is immutable after the flows creation. Most of the currently registered parsers benefit already: - HTTP/SMTP/FTP/TLS patterns are registered per direction already so they will benefit from the pattern midstream logic in (1) above. - the Rust based SMB parser uses a mix of pattern + probing parser as described in (3) above. - the NFS detection is purely done by probing parser and is updated to consider the direction in that parser. Other protocols, such as DNS, are still to do. Ticket: #2572
6 years ago
pub extern "C" fn rs_ikev2_probing_parser(_flow: *const Flow,
_direction: u8,
input:*const u8, input_len: u32,
proto-detect: improve midstream support When Suricata picks up a flow it assumes the first packet is toserver. In a perfect world without packet loss and where all sessions neatly start after Suricata itself started, this would be true. However, in reality we have to account for packet loss and Suricata starting to get packets for flows already active be for Suricata is (re)started. The protocol records on the wire would often be able to tell us more though. For example in SMB1 and SMB2 records there is a flag that indicates whether the record is a request or a response. This patch is enabling the procotol detection engine to utilize this information to 'reverse' the flow. There are three ways in which this is supported in this patch: 1. patterns for detection are registered per direction. If the proto was not recognized in the traffic direction, and midstream is enabled, the pattern set for the opposing direction is also evaluated. If that matches, the flow is considered to be in the wrong direction and is reversed. 2. probing parsers now have a way to feed back their understanding of the flow direction. They are now passed the direction as Suricata sees the traffic when calling the probing parsers. The parser can then see if its own observation matches that, and pass back it's own view to the caller. 3. a new pattern + probing parser set up: probing parsers can now be registered with a pattern, so that when the pattern matches the probing parser is called as well. The probing parser can then provide the protocol detection engine with the direction of the traffic. The process of reversing takes a multi step approach as well: a. reverse the current packets direction b. reverse most of the flows direction sensitive flags c. tag the flow as 'reversed'. This is because the 5 tuple is *not* reversed, since it is immutable after the flows creation. Most of the currently registered parsers benefit already: - HTTP/SMTP/FTP/TLS patterns are registered per direction already so they will benefit from the pattern midstream logic in (1) above. - the Rust based SMB parser uses a mix of pattern + probing parser as described in (3) above. - the NFS detection is purely done by probing parser and is updated to consider the direction in that parser. Other protocols, such as DNS, are still to do. Ticket: #2572
6 years ago
_rdir: *mut u8) -> AppProto
{
let slice = build_slice!(input,input_len as usize);
let alproto = unsafe{ ALPROTO_IKEV2 };
match parse_ikev2_header(slice) {
Ok((_, ref hdr)) => {
if hdr.maj_ver != 2 || hdr.min_ver != 0 {
SCLogDebug!("ipsec_probe: could be ipsec, but with unsupported/invalid version {}.{}",
hdr.maj_ver, hdr.min_ver);
return unsafe{ALPROTO_FAILED};
}
if hdr.exch_type.0 < 34 || hdr.exch_type.0 > 37 {
SCLogDebug!("ipsec_probe: could be ipsec, but with unsupported/invalid exchange type {}",
hdr.exch_type.0);
return unsafe{ALPROTO_FAILED};
}
if hdr.length as usize != slice.len() {
SCLogDebug!("ipsec_probe: could be ipsec, but length does not match");
return unsafe{ALPROTO_FAILED};
}
return alproto;
},
Err(nom::Err::Incomplete(_)) => {
return ALPROTO_UNKNOWN;
},
Err(_) => {
return unsafe{ALPROTO_FAILED};
},
}
}
const PARSER_NAME : &'static [u8] = b"ikev2\0";
#[no_mangle]
pub unsafe extern "C" fn rs_register_ikev2_parser() {
let default_port = CString::new("500").unwrap();
let parser = RustParser {
name : PARSER_NAME.as_ptr() as *const std::os::raw::c_char,
default_port : default_port.as_ptr(),
ipproto : core::IPPROTO_UDP,
probe_ts : rs_ikev2_probing_parser,
probe_tc : rs_ikev2_probing_parser,
min_depth : 0,
max_depth : 16,
state_new : rs_ikev2_state_new,
state_free : rs_ikev2_state_free,
tx_free : rs_ikev2_state_tx_free,
parse_ts : rs_ikev2_parse_request,
parse_tc : rs_ikev2_parse_response,
get_tx_count : rs_ikev2_state_get_tx_count,
get_tx : rs_ikev2_state_get_tx,
tx_get_comp_st : rs_ikev2_state_progress_completion_status,
tx_get_progress : rs_ikev2_tx_get_alstate_progress,
get_tx_logged : Some(rs_ikev2_tx_get_logged),
set_tx_logged : Some(rs_ikev2_tx_set_logged),
get_de_state : rs_ikev2_state_get_tx_detect_state,
set_de_state : rs_ikev2_state_set_tx_detect_state,
get_events : Some(rs_ikev2_state_get_events),
get_eventinfo : Some(rs_ikev2_state_get_event_info),
get_eventinfo_byid : Some(rs_ikev2_state_get_event_info_by_id),
localstorage_new : None,
localstorage_free : None,
get_tx_mpm_id : None,
set_tx_mpm_id : None,
get_files : None,
get_tx_iterator : None,
get_tx_detect_flags: None,
set_tx_detect_flags: None,
};
let ip_proto_str = CString::new("udp").unwrap();
if AppLayerProtoDetectConfProtoDetectionEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let alproto = AppLayerRegisterProtocolDetection(&parser, 1);
// store the allocated ID for the probe function
ALPROTO_IKEV2 = alproto;
if AppLayerParserConfParserEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let _ = AppLayerRegisterParser(&parser, alproto);
}
} else {
SCLogDebug!("Protocol detector and parser disabled for IKEV2.");
}
}
#[cfg(test)]
mod tests {
use super::IKEV2State;
#[test]
fn test_ikev2_parse_request_valid() {
// A UDP IKEV2 v4 request, in client mode
const REQ : &[u8] = &[
0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x20, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x18, 0x57, 0xab, 0xc3, 0x4a, 0x5f, 0x2c, 0xfe
];
let mut state = IKEV2State::new();
assert_eq!(1, state.parse(REQ, 0));
}
}