You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/detect-ssh-hassh.c

214 lines
7.1 KiB
C

/* Copyright (C) 2007-2020 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Vadym Malakhatko <v.malakhatko@sirinsoftware.com>
*/
#include "suricata-common.h"
#include "threads.h"
#include "decode.h"
#include "detect.h"
#include "detect-parse.h"
#include "detect-content.h"
#include "detect-engine.h"
#include "detect-engine-mpm.h"
#include "detect-engine-state.h"
#include "detect-engine-prefilter.h"
#include "flow.h"
#include "flow-var.h"
#include "flow-util.h"
#include "util-debug.h"
#include "util-unittest.h"
#include "util-unittest-helper.h"
#include "stream-tcp.h"
#include "app-layer.h"
#include "app-layer-parser.h"
#include "app-layer-ssh.h"
#include "detect-ssh-hassh.h"
#include "rust.h"
#define KEYWORD_NAME "ssh.hassh"
#define KEYWORD_ALIAS "ssh-hassh"
#define KEYWORD_DOC "ssh-keywords.html#hassh"
#define BUFFER_NAME "ssh.hassh"
#define BUFFER_DESC "Ssh Client Fingerprinting For Ssh Clients "
static int g_ssh_hassh_buffer_id = 0;
static InspectionBuffer *GetSshData(DetectEngineThreadCtx *det_ctx,
const DetectEngineTransforms *transforms, Flow *_f,
const uint8_t flow_flags, void *txv, const int list_id)
{
SCEnter();
InspectionBuffer *buffer = InspectionBufferGet(det_ctx, list_id);
if (buffer->inspect == NULL) {
const uint8_t *hassh = NULL;
uint32_t b_len = 0;
if (rs_ssh_tx_get_hassh(txv, &hassh, &b_len, flow_flags) != 1)
return NULL;
if (hassh == NULL || b_len == 0) {
SCLogDebug("SSH hassh not set");
return NULL;
}
InspectionBufferSetup(det_ctx, list_id, buffer, hassh, b_len);
InspectionBufferApplyTransforms(buffer, transforms);
}
return buffer;
}
/**
* \brief this function setup the hassh modifier keyword used in the rule
*
* \param de_ctx Pointer to the Detection Engine Context
* \param s Pointer to the Signature to which the current keyword belongs
* \param str Should hold an empty string always
*
* \retval 0 On success
* \retval -1 On failure
* \retval -2 on failure that should be silent after the first
*/
static int DetectSshHasshSetup(DetectEngineCtx *de_ctx, Signature *s, const char *arg)
{
if (DetectBufferSetActiveList(de_ctx, s, g_ssh_hassh_buffer_id) < 0)
return -1;
if (DetectSignatureSetAppProto(s, ALPROTO_SSH) < 0)
return -1;
/* try to enable Hassh */
rs_ssh_enable_hassh();
/* Check if Hassh is disabled */
if (!RunmodeIsUnittests() && !rs_ssh_hassh_is_enabled()) {
if (!SigMatchSilentErrorEnabled(de_ctx, DETECT_AL_SSH_HASSH)) {
SCLogError("hassh support is not enabled");
}
return -2;
}
return 0;
}
static bool DetectSshHasshHashValidateCallback(const Signature *s,
const char **sigerror)
{
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
for (uint32_t x = 0; x < s->init_data->buffer_index; x++) {
if (s->init_data->buffers[x].id != (uint32_t)g_ssh_hassh_buffer_id)
continue;
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
const SigMatch *sm = s->init_data->buffers[x].head;
for (; sm != NULL; sm = sm->next) {
if (sm->type != DETECT_CONTENT)
continue;
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
const DetectContentData *cd = (DetectContentData *)sm->ctx;
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
if (cd->flags & DETECT_CONTENT_NOCASE) {
*sigerror = "ssh.hassh should not be used together with "
"nocase, since the rule is automatically "
"lowercased anyway which makes nocase redundant.";
SCLogWarning("rule %u: %s", s->id, *sigerror);
}
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
if (cd->content_len != 32) {
*sigerror = "Invalid length of the specified ssh.hassh (should "
"be 32 characters long). This rule will therefore "
"never match.";
SCLogWarning("rule %u: %s", s->id, *sigerror);
return false;
}
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
for (size_t i = 0; i < cd->content_len; ++i) {
if (!isxdigit(cd->content[i])) {
*sigerror =
2 years ago
"Invalid ssh.hassh string (should be string of hexadecimal characters)."
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
"This rule will therefore never match.";
SCLogWarning("rule %u: %s", s->id, *sigerror);
return false;
}
}
}
}
return true;
}
static void DetectSshHasshHashSetupCallback(const DetectEngineCtx *de_ctx,
Signature *s)
{
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
for (uint32_t x = 0; x < s->init_data->buffer_index; x++) {
if (s->init_data->buffers[x].id != (uint32_t)g_ssh_hassh_buffer_id)
continue;
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
SigMatch *sm = s->init_data->buffers[x].head;
for (; sm != NULL; sm = sm->next) {
if (sm->type != DETECT_CONTENT)
continue;
DetectContentData *cd = (DetectContentData *)sm->ctx;
uint32_t u;
for (u = 0; u < cd->content_len; u++) {
if (isupper(cd->content[u])) {
cd->content[u] = u8_tolower(cd->content[u]);
}
}
detect: support multi buffer matching Multi buffer matching is implemented as a way for a rule to match on multiple buffers within the same transaction. Before this patch a rule like: dns.query; content:"example"; dns.query; content:".com"; would be equivalent to: dns.query; content:"example"; content:".com"; If a DNS query would request more than one name, e.g.: DNS: [example.net][something.com] Eeach would be inspected to have both patterns present. Otherwise, it would not be a match. So the rule above would not match, as neither example.net and somthing.com satisfy both conditions at the same time. This patch changes this behavior. Instead of the above, each time the sticky buffer is specified, it creates a separate detection unit. Each buffer is a "multi buffer" sticky buffer will now be evaluated against each "instance" of the sticky buffer. To continue with the above example: DNS: [example.net] <- matches 'dns.query; content:"example";' DNS: [something.com] <- matches 'dns.query; content:".com"' So this would now be a match. To make sure both patterns match in a single query string, the expression 'dns.query; content:"example"; content:".com";' still works for this. This patch doesn't yet enable the behavior for the keywords. That is done in a follow up patch. To be able to implement this the internal storage of parsed rules is changed. Until this patch and array of lists was used, where the index was the buffer id (e.g. http_uri, dns_query). Therefore there was only one list of matches per buffer id. As a side effect this array was always very sparsely populated as many buffers could not be mixed. This patch changes the internal representation. The new array is densely packed: dns.query; content:"1"; dns.query; bsize:1; content:"2"; [type: dns_query][list: content:"1";] [type: dns_query][list: bsize:1; content:"2";] The new scheme allows for multiple instances of the same buffer. These lists are then translated into multiple inspection engines during the final setup of the rule. Ticket: #5784.
2 years ago
SpmDestroyCtx(cd->spm_ctx);
cd->spm_ctx =
SpmInitCtx(cd->content, cd->content_len, 1, de_ctx->spm_global_thread_ctx);
}
}
}
/**
* \brief Registration function for hassh keyword.
*/
void DetectSshHasshRegister(void)
{
sigmatch_table[DETECT_AL_SSH_HASSH].name = KEYWORD_NAME;
sigmatch_table[DETECT_AL_SSH_HASSH].alias = KEYWORD_ALIAS;
sigmatch_table[DETECT_AL_SSH_HASSH].desc = BUFFER_NAME " sticky buffer";
sigmatch_table[DETECT_AL_SSH_HASSH].url = "/rules/" KEYWORD_DOC;
sigmatch_table[DETECT_AL_SSH_HASSH].Setup = DetectSshHasshSetup;
sigmatch_table[DETECT_AL_SSH_HASSH].flags |= SIGMATCH_INFO_STICKY_BUFFER | SIGMATCH_NOOPT;
DetectAppLayerMpmRegister(BUFFER_NAME, SIG_FLAG_TOSERVER, 2, PrefilterGenericMpmRegister,
GetSshData, ALPROTO_SSH, SshStateBannerDone),
DetectAppLayerInspectEngineRegister(BUFFER_NAME, ALPROTO_SSH, SIG_FLAG_TOSERVER,
SshStateBannerDone, DetectEngineInspectBufferGeneric, GetSshData);
DetectBufferTypeSetDescriptionByName(BUFFER_NAME, BUFFER_DESC);
g_ssh_hassh_buffer_id = DetectBufferTypeGetByName(BUFFER_NAME);
DetectBufferTypeRegisterSetupCallback(BUFFER_NAME, DetectSshHasshHashSetupCallback);
DetectBufferTypeRegisterValidateCallback(BUFFER_NAME, DetectSshHasshHashValidateCallback);
}