You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/counters.c

1010 lines
25 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <sys/time.h>
#include "time.h"
#include "counters.h"
#include "eidps.h"
#include "threadvars.h"
#include "tm-modules.h"
#include "tm-threads.h"
#include "util-unittest.h"
/** \todo config api */
#define LOGPATH "/var/log/eidps/stats.log"
static PerfThreadContext *perf_tc = NULL;
static PerfOPIfaceContext *perf_op_ctx = NULL;
/**
* Initializes the perf counter api. Things are hard coded currently.
* More work to be done when we implement multiple interfaces
*/
void PerfInitCounterApi()
{
PerfInitOPCtx();
return;
}
/**
* Initializes the output interface context
*/
void PerfInitOPCtx()
{
if ( (perf_op_ctx = malloc(sizeof(PerfOPIfaceContext))) == NULL) {
printf("error allocating memory\n");
exit(0);
}
memset(perf_op_ctx, 0, sizeof(PerfOPIfaceContext));
perf_op_ctx->iface = IFACE_FILE;
if ( (perf_op_ctx->file = strdup(LOGPATH)) == NULL) {
printf("error allocating memory\n");
exit(0);
}
if ( (perf_op_ctx->fp = fopen(perf_op_ctx->file, "w+")) == NULL) {
printf("fopen error opening file %s\n", perf_op_ctx->file);
exit(0);
}
/* club the counter from multiple instances of the tm before o/p */
perf_op_ctx->club_tm = 1;
/* init the lock used by PerfClubTMInst */
if (pthread_mutex_init(&perf_op_ctx->pctmi_lock, NULL) != 0) {
printf("error initializing the pctmi mutex\n");
exit(0);
}
return;
}
/**
* Spawns the wakeup, and the management thread
*/
void PerfSpawnThreads()
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
if ( (perf_tc = malloc(sizeof(PerfThreadContext))) == NULL) {
printf("Error allocating memory\n");
exit(0);
}
memset(perf_tc, 0, sizeof(PerfThreadContext));
perf_tc->flags = PT_RUN;
if (pthread_mutex_init(&perf_tc->wakeup_m, NULL) != 0) {
printf("Error initializing the perf_tc->wakeup_m mutex\n");
exit(0);
}
if (pthread_mutex_init(&perf_tc->mgmt_m, NULL) != 0) {
printf("Error initializing the perf_tc->mgmt_m mutex\n");
exit(0);
}
if (pthread_cond_init(&perf_tc->tc_cond, NULL) != 0) {
printf("Error initializing the perf_tc->tc_cond condition variable\n");
exit(0);
}
if (pthread_create(&perf_tc->wakeup_t, &attr, PerfWakeupThread, NULL) != 0) {
printf("Error creating PerfWakeupFunc thread\n");
exit(0);
}
if (pthread_create(&perf_tc->mgmt_t, &attr, PerfMgmtThread, NULL) != 0) {
printf("Error creating PerfWakeupFunc thread\n");
exit(0);
}
return;
}
/**
* Kills the wakeup and the management threads
*/
void PerfDestroyThreads()
{
perf_tc->flags |= PT_KILL;
/* prematurely wakeup, the mgmt and wakeup threads */
pthread_cond_broadcast(&perf_tc->tc_cond);
pthread_join(perf_tc->wakeup_t, NULL);
pthread_join(perf_tc->mgmt_t, NULL);
if (pthread_mutex_destroy(&perf_tc->wakeup_m) != 0) {
printf("Error destroying the mutex perf_tc->wakeup_m\n");
}
if (pthread_mutex_destroy(&perf_tc->mgmt_m) != 0) {
printf("Error destroying the mutex perf_tc->mgmt_m\n");
}
if (pthread_cond_destroy(&perf_tc->tc_cond) != 0) {
printf("Error destroying the condition variable perf_tc->tc_cond\n");
}
if (perf_tc != NULL) free(perf_tc);
return;
}
/**
* The management thread. This thread is responsible for writing the performance
* stats information.
*
* @param arg is NULL always
*/
void * PerfMgmtThread(void *arg)
{
u_int8_t run = 1;
struct timespec cond_time;
if (perf_op_ctx == NULL) {
printf("error: PerfInitCounterApi() has to be called first\n");
return NULL;
}
while (run) {
cond_time.tv_sec = time(NULL) + MGMTT_TTS;
cond_time.tv_nsec = 0;
pthread_mutex_lock(&perf_tc->mgmt_m);
pthread_cond_timedwait(&perf_tc->tc_cond, &perf_tc->mgmt_m,
&cond_time);
pthread_mutex_unlock(&perf_tc->mgmt_m);
// sleep(MGMTT_TTS);
PerfOutputCounters();
if (perf_tc->flags & PT_KILL)
run = 0;
}
return NULL;
}
/**
* Wake up thread. This thread wakes up every TTS(time to sleep) seconds and
* sets the flag for every ThreadVars' PerfContext
*
* @param arg is NULL always
*/
void * PerfWakeupThread(void *arg)
{
u_int8_t run = 1;
ThreadVars *tv = NULL;
PacketQueue *q = NULL;
struct timespec cond_time;
while (run) {
cond_time.tv_sec = time(NULL) + WUT_TTS;
cond_time.tv_nsec = 0;
pthread_mutex_lock(&perf_tc->wakeup_m);
pthread_cond_timedwait(&perf_tc->tc_cond, &perf_tc->wakeup_m,
&cond_time);
pthread_mutex_unlock(&perf_tc->wakeup_m);
// sleep(WUT_TTS);
tv = tv_root;
while (tv != NULL) {
if (tv->inq == NULL || tv->pctx.head == NULL) {
tv = tv->next;
continue;
}
q = &trans_q[tv->inq->id];
/* assuming the assignment of an int to be atomic, and even if it's
not, it should be okay */
tv->pctx.perf_flag = 1;
pthread_cond_signal(&q->cond_q);
tv = tv->next;
}
if (perf_tc->flags & PT_KILL)
run = 0;
}
return NULL;
}
/**
* Registers a counter
*
* @param cname holds the counter name
* @param tm_name holds the tm_name
* @param tid holds the tid running this module
* @param type holds the datatype of this counter variable
* @param head holds the PerfCounter
*
* @returns the counter id
*/
u_int32_t PerfRegisterCounter(char *cname, char *tm_name, int type,
char *desc, PerfContext *pctx)
{
PerfCounter **head = &pctx->head;
PerfCounter *temp = NULL;
PerfCounter *prev = NULL;
PerfCounter *pc = NULL;
if (cname == NULL || tm_name == NULL || pctx == NULL) {
printf("counter name, tm name null or PerfContext NULL\n");
return 0;
}
/* (TYPE_MAX - 1) because we still haven't implemented TYPE_STR */
if ((type >= (TYPE_MAX - 1)) || (type < 0)) {
printf("Error: Counters of type %d can't be registered\n", type);
return 0;
}
temp = prev = *head;
while (temp != NULL) {
prev = temp;
if (strcmp(cname, temp->name->cname) == 0 &&
strcmp(tm_name, temp->name->tm_name) == 0)
break;
temp = temp->next;
}
/* We already have a counter registered by this name */
if (temp != NULL)
return(temp->id);
if ( (pc = malloc(sizeof(PerfCounter))) == NULL) {
printf("error allocating memory\n");
exit(0);
}
memset(pc, 0, sizeof(PerfCounter));
if (prev == NULL) {
*head = pc;
}
else
prev->next = pc;
if( (pc->name = malloc(sizeof(PerfCounterName))) == NULL) {
printf("error allocating memory. aborting\n");
free(pc);
exit(0);
}
memset(pc->name, 0, sizeof(PerfCounterName));
if ( (pc->value = malloc(sizeof(PerfCounterValue))) == NULL) {
printf("error allocating memory. aborting\n");
free(pc->name);
free(pc);
exit(0);
}
memset(pc->value, 0, sizeof(PerfCounterValue));
pc->name->cname = strdup(cname);
pc->name->tm_name = strdup(tm_name);
pc->name->tid = pthread_self();
pc->value->type = type;
switch(pc->value->type) {
case TYPE_UINT64:
pc->value->size = sizeof(u_int64_t);
break;
case TYPE_DOUBLE:
pc->value->size = sizeof(double);
break;
}
if ( (pc->value->cvalue = malloc(pc->value->size)) == NULL) {
printf("error allocating memory\n");
exit(0);
}
memset(pc->value->cvalue, 0, pc->value->size);
/* assign a unique id to this PerfCounter. The id is local to this tv.
please note that the ids start from 1 and not 0 */
pc->id = ++(pctx->curr_id);
if (desc != NULL)
pc->desc = strdup(desc);
return pc->id;
}
/**
* Adds a TM to the clubbed TM table. Multiple instances of the same TM are
* stacked together in a PCTMI container
*
* @param tm_name is the name of the tm to be added
* @param pctx holds the PerfContext associated with the TM tm_name
*/
void PerfAddToClubbedTMTable(char *tm_name, PerfContext *pctx)
{
PerfClubTMInst *pctmi = NULL;
PerfClubTMInst *prev = NULL;
PerfClubTMInst *temp = NULL;
PerfContext **hpctx;
int i = 0;
pthread_mutex_lock(&perf_op_ctx->pctmi_lock);
pctmi = perf_op_ctx->pctmi;
prev = pctmi;
while (pctmi != NULL) {
prev = pctmi;
if (strcmp(tm_name, pctmi->tm_name) != 0) {
pctmi = pctmi->next;
continue;
}
break;
}
if (pctmi == NULL) {
if ( (temp = malloc(sizeof(PerfClubTMInst))) == NULL) {
printf("error allocating memory\n");
exit(0);
}
memset(temp, 0, sizeof(PerfClubTMInst));
temp->size++;
temp->head = realloc(temp->head, temp->size * sizeof(PerfContext **));
temp->head[0] = pctx;
temp->tm_name = strdup(tm_name);
if (prev == NULL)
perf_op_ctx->pctmi = temp;
else
prev->next = temp;
pthread_mutex_unlock(&perf_op_ctx->pctmi_lock);
return;
}
hpctx = pctmi->head;
for (i = 0; i < pctmi->size; i++) {
if (hpctx[i] != pctx)
continue;
pthread_mutex_unlock(&perf_op_ctx->pctmi_lock);
return;
}
pctmi->head = realloc(pctmi->head, (pctmi->size + 1) * sizeof(PerfContext **));
hpctx = pctmi->head;
hpctx[pctmi->size] = pctx;
for (i = pctmi->size - 1; i >= 0; i--) {
if (pctx->curr_id <= hpctx[i]->curr_id) {
hpctx[i + 1] = hpctx[i];
hpctx[i] = pctx;
continue;
}
break;
}
pctmi->size++;
pthread_mutex_unlock(&perf_op_ctx->pctmi_lock);
return;
}
/**
* Returns a counter array for counters in this id range(s_id - e_id)
*
* @param s_id is the start id of the counter
* @param e_id is the end id of the counter
* @param pctx is a pointer to the tv's PerfContext
*
* @returns a counter-array in this(s_id-e_id) range for this tm instance
*/
PerfCounterArray * PerfGetCounterArrayRange(u_int32_t s_id, u_int32_t e_id,
PerfContext *pctx)
{
PerfCounterArray *pca = NULL;
u_int32_t i = 0;
if (pctx == NULL) {
printf("pctx is NULL\n");
return NULL;
}
if (s_id < 1 || e_id < 1 || s_id > e_id) {
printf("error with the counter ids\n");
return NULL;
}
if (e_id > pctx->curr_id) {
printf("end id is greater than the max id for this tv\n");
return NULL;
}
if (pctx == NULL) {
printf("perfcontext is NULL\n");
return NULL;
}
if ( (pca = malloc(sizeof(PerfCounterArray))) == NULL) {
printf("Error allocating memory\n");
exit(0);
}
memset(pca, 0, sizeof(PerfCounterArray));
if ( (pca->head = malloc(sizeof(PCAElem) * (e_id - s_id + 2))) == NULL) {
printf("Error allocating memory\n");
exit(0);
}
memset(pca->head, 0, sizeof(PCAElem) * (e_id - s_id + 2));
i = 1;
while (s_id <= e_id) {
pca->head[i].id = s_id++;
i++;
}
pca->size = i - 1;
return pca;
}
/**
* Returns a counter array for all counters registered for this tm instance
*
* @param pctx is a pointer to the tv's PerfContext
*
* @returns a counter-array for all the counters of this tm instance
*/
PerfCounterArray * PerfGetAllCountersArray(PerfContext *pctx)
{
return((pctx)?PerfGetCounterArrayRange(1, pctx->curr_id, pctx):NULL);
}
/**
* Updates an individual counter
*
* @param cname holds the counter name
* @param tm_name holds the tm name
* @param id holds the counter id for this tm
* @param value holds a pointer to the local counter from the client thread
* @param pctx holds the PerfContext associated with this instance of the tm
*/
int PerfUpdateCounter(char *cname, char *tm_name, u_int32_t id, void *value,
PerfContext *pctx)
{
PerfCounter *pc = NULL;
if (pctx == NULL) {
printf("pctx null inside PerfUpdateCounter\n");
return 0;
}
if ((cname == NULL || tm_name == NULL) && (id > pctx->curr_id || id < 1)) {
printf("id supplied doesn't exist. Please supply cname and "
"tm_name instead\n");
return 0;
}
if (value == NULL) {
printf("Pointer to counter(value) supplied to PerfUpdateCounter is NULL\n");
return 0;
}
pc = pctx->head;
while(pc != NULL) {
if (pc->id != id) {
pc = pc->next;
continue;
}
memcpy(pc->value->cvalue, value, pc->value->size);
pc->updated++;
break;
}
if (pc == NULL) {
printf("this counter isn't registered in this tm\n");
return 0;
}
return 1;
}
/**
* Syncs the counter array with the global counter variables
*
* @param pca holds a pointer to the PerfCounterArray
* @param pctx holds a pointer the the tv's PerfContext
* @param reset_lc indicates whether the local counter has to be reset or not
*/
int PerfUpdateCounterArray(PerfCounterArray *pca, PerfContext *pctx, int reset_lc)
{
PerfCounter *pc = NULL;
PCAElem *pcae = NULL;
u_int32_t i = 0;
if (pca == NULL || pctx == NULL) {
printf("pca or pctx is NULL inside PerfUpdateCounterArray\n");
return -1;
}
pc = pctx->head;
pcae = pca->head;
pthread_mutex_lock(&pctx->m);
for (i = 1; i <= pca->size; i++) {
while (pc != NULL) {
if (pc->id != pcae[i].id) {
pc = pc->next;
continue;
}
memcpy(pc->value->cvalue, &(pcae[i].cnt), pc->value->size);
pc->updated++;
if (reset_lc)
pcae[i].cnt = 0;
pc = pc->next;
break;
}
}
pthread_mutex_unlock(&pctx->m);
pctx->perf_flag = 0;
return 1;
}
/**
* The output interface dispatcher for the counter api
*/
void PerfOutputCounters()
{
switch (perf_op_ctx->iface) {
case IFACE_FILE:
PerfOutputCounterFileIface();
break;
case IFACE_CONSOLE:
// yet to be implemented
break;
case IFACE_NETWORK:
// yet to be implemented
break;
case IFACE_SYSLOG:
// yet to be implemented
break;
}
return;
}
/**
* The file output interface for the counter api
*/
int PerfOutputCounterFileIface()
{
ThreadVars *tv = tv_root;
PerfClubTMInst *pctmi = NULL;
PerfCounter *pc = NULL;
PerfCounter **pc_heads;
u_int64_t *ui64_cvalue = NULL;
u_int64_t result = 0;
struct timeval tval;
struct tm *tms;
int i;
int flag;
if (perf_op_ctx->fp == NULL) {
printf("perf_op_ctx->fp is NULL");
return 0;
}
memset(&tval, 0, sizeof(struct timeval));
gettimeofday(&tval, NULL);
tms = (struct tm *)localtime(&tval.tv_sec);
fprintf(perf_op_ctx->fp, "-------------------------------------------------"
"------------------\n");
fprintf(perf_op_ctx->fp, "%d/%d/%d -- %d:%d:%d\n", tms->tm_mday,
tms->tm_mon, tms->tm_year + 1900, tms->tm_hour, tms->tm_min, tms->tm_sec);
fprintf(perf_op_ctx->fp, "-------------------------------------------------"
"------------------\n");
fprintf(perf_op_ctx->fp, "%-25s | %-25s | %-s\n", "Counter", "TM Name",
"Value");
fprintf(perf_op_ctx->fp, "-------------------------------------------------"
"------------------\n");
if (perf_op_ctx->club_tm == 0) {
while (tv != NULL) {
pthread_mutex_lock(&tv->pctx.m);
pc = tv->pctx.head;
while (pc != NULL) {
ui64_cvalue = (u_int64_t *)pc->value->cvalue;
fprintf(perf_op_ctx->fp, "%-25s | %-25s | %-lu\n",
pc->name->cname, pc->name->tm_name, *ui64_cvalue);
//printf("%-10d %-10d %-10s %-llu\n", pc->name->tid, pc->id,
// pc->name->cname, *ui64_cvalue);
pc = pc->next;
}
pthread_mutex_unlock(&tv->pctx.m);
tv = tv->next;
}
fflush(perf_op_ctx->fp);
return 1;
}
pctmi = perf_op_ctx->pctmi;
while (pctmi != NULL) {
if ( (pc_heads = malloc(pctmi->size * sizeof(PerfCounter **))) == NULL) {
printf("error allocating memory\n");
exit(0);
}
memset(pc_heads, 0, pctmi->size * sizeof(PerfCounter **));
for (i = 0; i < pctmi->size; i++) {
pc_heads[i] = pctmi->head[i]->head;
pthread_mutex_lock(&pctmi->head[i]->m);
while(strcmp(pctmi->tm_name, pc_heads[i]->name->tm_name))
pc_heads[i] = pc_heads[i]->next;
}
flag = 1;
while(flag) {
result = 0;
pc = pc_heads[0];
for (i = 0; i < pctmi->size; i++) {
ui64_cvalue = pc_heads[i]->value->cvalue;
result += *ui64_cvalue;
pc_heads[i] = pc_heads[i]->next;
if (pc_heads[i] == NULL ||
strcmp(pctmi->tm_name, pc_heads[0]->name->tm_name))
flag = 0;
}
fprintf(perf_op_ctx->fp, "%-25s | %-25s | %-lu\n",
pc->name->cname, pctmi->tm_name, result);
//printf("%-25s | %-25s | %-u\n", pc->name->cname,
// pctmi->tm_name, result);
}
for (i = 0; i < pctmi->size; i++)
pthread_mutex_unlock(&pctmi->head[i]->m);
pctmi = pctmi->next;
free(pc_heads);
fflush(perf_op_ctx->fp);
}
return 1;
}
/**
* Kills the perf threads and releases other resources.
*/
void PerfReleaseResources()
{
PerfDestroyThreads();
PerfReleaseOPCtx();
return;
}
void PerfReleaseOPCtx()
{
if (perf_op_ctx != NULL) {
if (perf_op_ctx->fp != NULL)
fclose(perf_op_ctx->fp);
if (perf_op_ctx->file != NULL)
free(perf_op_ctx->file);
if (perf_op_ctx->pctmi != NULL) {
if (perf_op_ctx->pctmi->tm_name != NULL)
free(perf_op_ctx->pctmi->tm_name);
if (perf_op_ctx->pctmi->head != NULL)
free(perf_op_ctx->pctmi->head);
free(perf_op_ctx->pctmi);
}
free(perf_op_ctx);
}
return;
}
void PerfReleasePerfCounterS(PerfCounter *head)
{
PerfCounter *pc = NULL;
while (head != NULL) {
pc = head;
head = head->next;
PerfReleaseCounter(pc);
}
return;
}
void PerfReleaseCounter(PerfCounter *pc)
{
if (pc != NULL) {
if (pc->name != NULL) {
if (pc->name->cname != NULL) free(pc->name->cname);
if (pc->name->tm_name != NULL) free(pc->name->tm_name);
free(pc->name);
}
if (pc->value != NULL) {
if (pc->value->cvalue != NULL) free(pc->value->cvalue);
free(pc->value);
}
if (pc->desc != NULL) free(pc->desc);
free(pc);
}
return;
}
void PerfReleasePCA(PerfCounterArray *pca)
{
if (pca != NULL) {
if (pca->head != NULL)
free(pca->head);
free(pca);
}
return;
}
//------------------------------------Unit_Tests------------------------------------
static int PerfTestCounterReg01()
{
PerfContext pctx;
memset(&pctx, 0, sizeof(PerfContext));
return PerfRegisterCounter("t1", "c1", 5, NULL, &pctx);
}
static int PerfTestCounterReg02()
{
PerfContext pctx;
memset(&pctx, 0, sizeof(PerfContext));
return PerfRegisterCounter(NULL, NULL, TYPE_UINT64, NULL, &pctx);
}
static int PerfTestCounterReg03()
{
PerfContext pctx;
int result;
memset(&pctx, 0, sizeof(PerfContext));
result = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &pctx);
PerfReleasePerfCounterS(pctx.head);
return result;
}
static int PerfTestCounterReg04()
{
PerfContext pctx;
int result;
memset(&pctx, 0, sizeof(PerfContext));
PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &pctx);
PerfRegisterCounter("t2", "c2", TYPE_UINT64, NULL, &pctx);
PerfRegisterCounter("t3", "c3", TYPE_UINT64, NULL, &pctx);
result = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &pctx);
PerfReleasePerfCounterS(pctx.head);
return result;
}
static int PerfTestGetCntArray05()
{
ThreadVars tv;
int id;
memset(&tv, 0, sizeof(ThreadVars));
id = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
tv.pca = PerfGetAllCountersArray(NULL);
return (!tv.pca)?1:0;
}
static int PerfTestGetCntArray06()
{
ThreadVars tv;
int id;
int result;
memset(&tv, 0, sizeof(ThreadVars));
id = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
tv.pca = PerfGetAllCountersArray(&tv.pctx);
result = (tv.pca)?1:0;
PerfReleasePerfCounterS(tv.pctx.head);
PerfReleasePCA(tv.pca);
return result;
}
static int PerfTestCntArraySize07()
{
ThreadVars tv;
PerfCounterArray *pca = NULL;
int result;
memset(&tv, 0, sizeof(ThreadVars));
pca = (PerfCounterArray *)&tv.pca;
PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
PerfRegisterCounter("t2", "c2", TYPE_UINT64, NULL, &tv.pctx);
pca = PerfGetAllCountersArray(&tv.pctx);
PerfCounterIncr(1, pca);
PerfCounterIncr(2, pca);
result = pca->size;
PerfReleasePerfCounterS(tv.pctx.head);
PerfReleasePCA(pca);
return result;
}
static int PerfTestUpdateCounter08()
{
ThreadVars tv;
PerfCounterArray *pca = NULL;
int id;
int result;
memset(&tv, 0, sizeof(ThreadVars));
id = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
pca = PerfGetAllCountersArray(&tv.pctx);
PerfCounterIncr(id, pca);
PerfCounterAdd(id, pca, 100);
result = pca->head[id].cnt;
PerfReleasePerfCounterS(tv.pctx.head);
PerfReleasePCA(pca);
return result;
}
static int PerfTestUpdateCounter09()
{
ThreadVars tv;
PerfCounterArray *pca = NULL;
int id1, id2;
int result;
memset(&tv, 0, sizeof(ThreadVars));
id1 = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
PerfRegisterCounter("t2", "c2", TYPE_UINT64, NULL, &tv.pctx);
PerfRegisterCounter("t3", "c3", TYPE_UINT64, NULL, &tv.pctx);
PerfRegisterCounter("t4", "c4", TYPE_UINT64, NULL, &tv.pctx);
id2 = PerfRegisterCounter("t5", "c5", TYPE_UINT64, NULL, &tv.pctx);
pca = PerfGetAllCountersArray(&tv.pctx);
PerfCounterIncr(id2, pca);
PerfCounterAdd(id2, pca, 100);
result = (pca->head[id1].cnt == 0) && (pca->head[id2].cnt == 101);
PerfReleasePerfCounterS(tv.pctx.head);
PerfReleasePCA(pca);
return result;
}
static int PerfTestUpdateGlobalCounter10()
{
ThreadVars tv;
PerfCounterArray *pca = NULL;
int result = 1;
int id1, id2, id3;
u_int64_t *p = NULL;
u_int64_t m;
memset(&tv, 0, sizeof(ThreadVars));
id1 = PerfRegisterCounter("t1", "c1", TYPE_UINT64, NULL, &tv.pctx);
id2 = PerfRegisterCounter("t2", "c2", TYPE_UINT64, NULL, &tv.pctx);
id3 = PerfRegisterCounter("t3", "c3", TYPE_UINT64, NULL, &tv.pctx);
pca = PerfGetAllCountersArray(&tv.pctx);
PerfCounterIncr(id1, pca);
PerfCounterAdd(id2, pca, 100);
PerfCounterIncr(id3, pca);
PerfCounterAdd(id3, pca, 100);
PerfUpdateCounterArray(pca, &tv.pctx, 0);
p = (u_int64_t *)tv.pctx.head->value->cvalue;
m = *p;
result = (m == 1);
p = (u_int64_t *)tv.pctx.head->next->value->cvalue;
result &= (*p == 100);
p = (u_int64_t *)tv.pctx.head->next->next->value->cvalue;
result &= (*p == 101);
return result;
}
void PerfRegisterTests()
{
UtRegisterTest("PerfTestCounterReg01", PerfTestCounterReg01, 0);
UtRegisterTest("PerfTestCounterReg02", PerfTestCounterReg02, 0);
UtRegisterTest("PerfTestCounterReg03", PerfTestCounterReg03, 1);
UtRegisterTest("PerfTestCounterReg04", PerfTestCounterReg04, 1);
UtRegisterTest("PerfTestGetCntArray05", PerfTestGetCntArray05, 1);
UtRegisterTest("PerfTestGetCntArray06", PerfTestGetCntArray06, 1);
UtRegisterTest("PerfTestCntArraySize07", PerfTestCntArraySize07, 2);
UtRegisterTest("PerfTestUpdateCounter08", PerfTestUpdateCounter08, 101);
UtRegisterTest("PerfTestUpdateCounter09", PerfTestUpdateCounter09, 1);
UtRegisterTest("PerfTestUpdateGlobalCounter10",
PerfTestUpdateGlobalCounter10, 1);
return;
}