You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/rust/src/ntp/ntp.rs

440 lines
13 KiB
Rust

/* Copyright (C) 2017 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
// written by Pierre Chifflier <chifflier@wzdftpd.net>
extern crate ntp_parser;
use self::ntp_parser::*;
use core;
use core::{AppProto,Flow,ALPROTO_UNKNOWN,ALPROTO_FAILED};
use applayer;
use parser::*;
use libc;
use std;
use std::ffi::{CStr,CString};
use log::*;
use nom;
#[repr(u32)]
pub enum NTPEvent {
UnsolicitedResponse = 0,
MalformedData,
NotRequest,
NotResponse,
}
pub struct NTPState {
/// List of transactions for this session
transactions: Vec<NTPTransaction>,
/// Events counter
events: u16,
/// tx counter for assigning incrementing id's to tx's
tx_id: u64,
}
#[derive(Debug)]
pub struct NTPTransaction {
/// The NTP reference ID
pub xid: u32,
/// The internal transaction id
id: u64,
/// The detection engine state, if present
de_state: Option<*mut core::DetectEngineState>,
/// The events associated with this transaction
events: *mut core::AppLayerDecoderEvents,
logged: applayer::LoggerFlags,
}
impl NTPState {
pub fn new() -> NTPState {
NTPState{
transactions: Vec::new(),
events: 0,
tx_id: 0,
}
}
}
impl NTPState {
/// Parse an NTP request message
///
/// Returns The number of messages parsed, or -1 on error
fn parse(&mut self, i: &[u8], _direction: u8) -> i32 {
match parse_ntp(i) {
Ok((_,ref msg)) => {
// SCLogDebug!("parse_ntp: {:?}",msg);
if msg.mode == NtpMode::SymmetricActive || msg.mode == NtpMode::Client {
let mut tx = self.new_tx();
// use the reference id as identifier
tx.xid = msg.ref_id;
self.transactions.push(tx);
}
1
},
Err(nom::Err::Incomplete(_)) => {
SCLogDebug!("Insufficient data while parsing NTP data");
self.set_event(NTPEvent::MalformedData);
-1
},
Err(_) => {
SCLogDebug!("Error while parsing NTP data");
self.set_event(NTPEvent::MalformedData);
-1
},
}
}
fn free(&mut self) {
// All transactions are freed when the `transactions` object is freed.
// But let's be explicit
self.transactions.clear();
}
fn new_tx(&mut self) -> NTPTransaction {
self.tx_id += 1;
NTPTransaction::new(self.tx_id)
}
pub fn get_tx_by_id(&mut self, tx_id: u64) -> Option<&NTPTransaction> {
self.transactions.iter().find(|&tx| tx.id == tx_id + 1)
}
fn free_tx(&mut self, tx_id: u64) {
let tx = self.transactions.iter().position(|ref tx| tx.id == tx_id + 1);
debug_assert!(tx != None);
if let Some(idx) = tx {
let _ = self.transactions.remove(idx);
}
}
/// Set an event. The event is set on the most recent transaction.
pub fn set_event(&mut self, event: NTPEvent) {
if let Some(tx) = self.transactions.last_mut() {
let ev = event as u8;
core::sc_app_layer_decoder_events_set_event_raw(&mut tx.events, ev);
self.events += 1;
}
}
}
impl NTPTransaction {
pub fn new(id: u64) -> NTPTransaction {
NTPTransaction {
xid: 0,
id: id,
de_state: None,
events: std::ptr::null_mut(),
logged: applayer::LoggerFlags::new(),
}
}
fn free(&mut self) {
if self.events != std::ptr::null_mut() {
core::sc_app_layer_decoder_events_free_events(&mut self.events);
}
}
}
impl Drop for NTPTransaction {
fn drop(&mut self) {
self.free();
}
}
/// Returns *mut NTPState
#[no_mangle]
pub extern "C" fn rs_ntp_state_new() -> *mut libc::c_void {
let state = NTPState::new();
let boxed = Box::new(state);
return unsafe{std::mem::transmute(boxed)};
}
/// Params:
/// - state: *mut NTPState as void pointer
#[no_mangle]
pub extern "C" fn rs_ntp_state_free(state: *mut libc::c_void) {
// Just unbox...
let mut ntp_state: Box<NTPState> = unsafe{std::mem::transmute(state)};
ntp_state.free();
}
#[no_mangle]
pub extern "C" fn rs_ntp_parse_request(_flow: *const core::Flow,
state: *mut libc::c_void,
_pstate: *mut libc::c_void,
input: *const u8,
input_len: u32,
_data: *const libc::c_void,
_flags: u8) -> i32 {
let buf = build_slice!(input,input_len as usize);
let state = cast_pointer!(state,NTPState);
state.parse(buf, 0)
}
#[no_mangle]
pub extern "C" fn rs_ntp_parse_response(_flow: *const core::Flow,
state: *mut libc::c_void,
_pstate: *mut libc::c_void,
input: *const u8,
input_len: u32,
_data: *const libc::c_void,
_flags: u8) -> i32 {
let buf = build_slice!(input,input_len as usize);
let state = cast_pointer!(state,NTPState);
state.parse(buf, 1)
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_get_tx(state: *mut libc::c_void,
tx_id: u64)
-> *mut libc::c_void
{
let state = cast_pointer!(state,NTPState);
match state.get_tx_by_id(tx_id) {
Some(tx) => unsafe{std::mem::transmute(tx)},
None => std::ptr::null_mut(),
}
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_get_tx_count(state: *mut libc::c_void)
-> u64
{
let state = cast_pointer!(state,NTPState);
state.tx_id
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_tx_free(state: *mut libc::c_void,
tx_id: u64)
{
let state = cast_pointer!(state,NTPState);
state.free_tx(tx_id);
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_progress_completion_status(
_direction: u8)
-> libc::c_int
{
return 1;
}
#[no_mangle]
pub extern "C" fn rs_ntp_tx_get_alstate_progress(_tx: *mut libc::c_void,
_direction: u8)
-> libc::c_int
{
1
}
#[no_mangle]
pub extern "C" fn rs_ntp_tx_set_logged(_state: &mut NTPState,
tx: &mut NTPTransaction,
logged: u32)
{
tx.logged.set(logged);
}
#[no_mangle]
pub extern "C" fn rs_ntp_tx_get_logged(_state: &mut NTPState,
tx: &mut NTPTransaction)
-> u32
{
return tx.logged.get();
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_set_tx_detect_state(
tx: *mut libc::c_void,
de_state: &mut core::DetectEngineState) -> libc::c_int
{
let tx = cast_pointer!(tx,NTPTransaction);
tx.de_state = Some(de_state);
0
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_get_tx_detect_state(
tx: *mut libc::c_void)
-> *mut core::DetectEngineState
{
let tx = cast_pointer!(tx,NTPTransaction);
match tx.de_state {
Some(ds) => ds,
None => std::ptr::null_mut(),
}
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_get_events(state: *mut libc::c_void,
tx_id: u64)
-> *mut core::AppLayerDecoderEvents
{
let state = cast_pointer!(state,NTPState);
match state.get_tx_by_id(tx_id) {
Some(tx) => tx.events,
_ => std::ptr::null_mut(),
}
}
#[no_mangle]
pub extern "C" fn rs_ntp_state_get_event_info(event_name: *const libc::c_char,
event_id: *mut libc::c_int,
event_type: *mut core::AppLayerEventType)
-> libc::c_int
{
if event_name == std::ptr::null() { return -1; }
let c_event_name: &CStr = unsafe { CStr::from_ptr(event_name) };
let event = match c_event_name.to_str() {
Ok(s) => {
match s {
"malformed_data" => NTPEvent::MalformedData as i32,
_ => -1, // unknown event
}
},
Err(_) => -1, // UTF-8 conversion failed
};
unsafe{
*event_type = core::APP_LAYER_EVENT_TYPE_TRANSACTION;
*event_id = event as libc::c_int;
};
0
}
static mut ALPROTO_NTP : AppProto = ALPROTO_UNKNOWN;
#[no_mangle]
proto-detect: improve midstream support When Suricata picks up a flow it assumes the first packet is toserver. In a perfect world without packet loss and where all sessions neatly start after Suricata itself started, this would be true. However, in reality we have to account for packet loss and Suricata starting to get packets for flows already active be for Suricata is (re)started. The protocol records on the wire would often be able to tell us more though. For example in SMB1 and SMB2 records there is a flag that indicates whether the record is a request or a response. This patch is enabling the procotol detection engine to utilize this information to 'reverse' the flow. There are three ways in which this is supported in this patch: 1. patterns for detection are registered per direction. If the proto was not recognized in the traffic direction, and midstream is enabled, the pattern set for the opposing direction is also evaluated. If that matches, the flow is considered to be in the wrong direction and is reversed. 2. probing parsers now have a way to feed back their understanding of the flow direction. They are now passed the direction as Suricata sees the traffic when calling the probing parsers. The parser can then see if its own observation matches that, and pass back it's own view to the caller. 3. a new pattern + probing parser set up: probing parsers can now be registered with a pattern, so that when the pattern matches the probing parser is called as well. The probing parser can then provide the protocol detection engine with the direction of the traffic. The process of reversing takes a multi step approach as well: a. reverse the current packets direction b. reverse most of the flows direction sensitive flags c. tag the flow as 'reversed'. This is because the 5 tuple is *not* reversed, since it is immutable after the flows creation. Most of the currently registered parsers benefit already: - HTTP/SMTP/FTP/TLS patterns are registered per direction already so they will benefit from the pattern midstream logic in (1) above. - the Rust based SMB parser uses a mix of pattern + probing parser as described in (3) above. - the NFS detection is purely done by probing parser and is updated to consider the direction in that parser. Other protocols, such as DNS, are still to do. Ticket: #2572
6 years ago
pub extern "C" fn ntp_probing_parser(_flow: *const Flow,
_direction: u8,
input:*const u8, input_len: u32,
_rdir: *mut u8) -> AppProto
{
let slice: &[u8] = unsafe { std::slice::from_raw_parts(input as *mut u8, input_len as usize) };
let alproto = unsafe{ ALPROTO_NTP };
match parse_ntp(slice) {
Ok((_, ref msg)) => {
if msg.version == 3 || msg.version == 4 {
return alproto;
} else {
return unsafe{ALPROTO_FAILED};
}
},
Err(nom::Err::Incomplete(_)) => {
return ALPROTO_UNKNOWN;
},
Err(_) => {
return unsafe{ALPROTO_FAILED};
},
}
}
const PARSER_NAME : &'static [u8] = b"ntp\0";
#[no_mangle]
pub unsafe extern "C" fn rs_register_ntp_parser() {
let default_port = CString::new("123").unwrap();
let parser = RustParser {
name : PARSER_NAME.as_ptr() as *const libc::c_char,
default_port : default_port.as_ptr(),
ipproto : core::IPPROTO_UDP,
probe_ts : ntp_probing_parser,
probe_tc : ntp_probing_parser,
min_depth : 0,
max_depth : 16,
state_new : rs_ntp_state_new,
state_free : rs_ntp_state_free,
tx_free : rs_ntp_state_tx_free,
parse_ts : rs_ntp_parse_request,
parse_tc : rs_ntp_parse_response,
get_tx_count : rs_ntp_state_get_tx_count,
get_tx : rs_ntp_state_get_tx,
tx_get_comp_st : rs_ntp_state_progress_completion_status,
tx_get_progress : rs_ntp_tx_get_alstate_progress,
get_tx_logged : None,
set_tx_logged : None,
get_de_state : rs_ntp_state_get_tx_detect_state,
set_de_state : rs_ntp_state_set_tx_detect_state,
get_events : Some(rs_ntp_state_get_events),
get_eventinfo : Some(rs_ntp_state_get_event_info),
localstorage_new : None,
localstorage_free : None,
get_tx_mpm_id : None,
set_tx_mpm_id : None,
get_files : None,
get_tx_iterator : None,
};
let ip_proto_str = CString::new("udp").unwrap();
if AppLayerProtoDetectConfProtoDetectionEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let alproto = AppLayerRegisterProtocolDetection(&parser, 1);
// store the allocated ID for the probe function
ALPROTO_NTP = alproto;
if AppLayerParserConfParserEnabled(ip_proto_str.as_ptr(), parser.name) != 0 {
let _ = AppLayerRegisterParser(&parser, alproto);
}
} else {
SCLogDebug!("Protocol detecter and parser disabled for NTP.");
}
}
#[cfg(test)]
mod tests {
use super::NTPState;
#[test]
fn test_ntp_parse_request_valid() {
// A UDP NTP v4 request, in client mode
const REQ : &[u8] = &[
0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x18, 0x57, 0xab, 0xc3, 0x4a, 0x5f, 0x2c, 0xfe
];
let mut state = NTPState::new();
assert_eq!(1, state.parse(REQ, 0));
}
}