You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-mpm-ac-ks-small.c

102 lines
3.5 KiB
C

/* Copyright (C) 2013-2014 Open Information Security Foundation
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Ken Steele <suricata@tilera.com>
* Included by util-mpm-ac-ks.c with different SLOAD, SINDEX and
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
* FUNC_NAME
*
*/
/* Only included into util-mpm-ac-ks.c, which defines FUNC_NAME
*
*/
#ifdef FUNC_NAME
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
/* This function handles (ctx->state_count < 32767) */
uint32_t FUNC_NAME(const SCACTileSearchCtx *ctx, MpmThreadCtx *mpm_thread_ctx,
PrefilterRuleStore *pmq, const uint8_t *buf, uint32_t buflen)
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
{
uint32_t i = 0;
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
int matches = 0;
uint8_t mpm_bitarray[ctx->mpm_bitarray_size];
memset(mpm_bitarray, 0, ctx->mpm_bitarray_size);
const uint8_t* restrict xlate = ctx->translate_table;
STYPE *state_table = (STYPE*)ctx->state_table;
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
STYPE state = 0;
int c = xlate[buf[0]];
/* If buflen at least 4 bytes and buf 4-byte aligned. */
if (buflen >= (4 + EXTRA) && ((uintptr_t)buf & 0x3) == 0) {
BUF_TYPE data = *(BUF_TYPE* restrict)(&buf[0]);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
uint64_t index = 0;
/* Process 4*floor(buflen/4) bytes. */
i = 0;
while ((i + EXTRA) < (buflen & ~0x3)) {
BUF_TYPE data1 = *(BUF_TYPE* restrict)(&buf[i + 4]);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
index = SINDEX(index, state);
state = SLOAD(state_table + index + c);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
c = xlate[BYTE1(data)];
if (unlikely(SCHECK(state))) {
matches = CheckMatch(ctx, pmq, buf, buflen, state, i, matches, mpm_bitarray);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
}
i++;
index = SINDEX(index, state);
state = SLOAD(state_table + index + c);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
c = xlate[BYTE2(data)];
if (unlikely(SCHECK(state))) {
matches = CheckMatch(ctx, pmq, buf, buflen, state, i, matches, mpm_bitarray);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
}
i++;
index = SINDEX(index, state);
state = SLOAD(state_table + index + c);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
c = xlate[BYTE3(data)];
if (unlikely(SCHECK(state))) {
matches = CheckMatch(ctx, pmq, buf, buflen, state, i, matches, mpm_bitarray);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
}
data = data1;
i++;
index = SINDEX(index, state);
state = SLOAD(state_table + index + c);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
c = xlate[BYTE0(data)];
if (unlikely(SCHECK(state))) {
matches = CheckMatch(ctx, pmq, buf, buflen, state, i, matches, mpm_bitarray);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
}
i++;
}
}
/* Process buflen % 4 bytes. */
for (; i < buflen; i++) {
size_t index = 0 ;
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
index = SINDEX(index, state);
state = SLOAD(state_table + index + c);
if (likely(i+1 < buflen))
c = xlate[buf[i+1]];
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
if (unlikely(SCHECK(state))) {
matches = CheckMatch(ctx, pmq, buf, buflen, state, i, matches, mpm_bitarray);
New Multi-pattern matcher, ac-tile, optimized for Tile architecture. Aho-Corasick mpm optimized for Tilera Tile-Gx architecture. Based on the util-mpm-ac.c code base. The primary optimizations are: 1) Matching function used Tilera specific instructions. 2) Alphabet compression to reduce delta table size to increase cache utilization and performance. The basic observation is that not all 256 ASCII characters are used by the set of multiple patterns in a group for which a DFA is created. The first reason is that Suricata's pattern matching is case-insensitive, so all uppercase characters are converted to lowercase, leaving a hole of 26 characters in the alphabet. Previously, this hole was simply left in the middle of the alphabet and thus in the generated Next State (delta) tables. A new, smaller, alphabet is created using a translation table of 256 bytes per mpm group. Previously, there was one global translation table for converting upper case to lowercase. Additional, unused characters are found by creating a histogram of all the characters in all the patterns. Then all the characters with zero counts are mapped to one character (0) in the new alphabet. Since These characters appear in no pattern, they can all be mapped to a single character and still result in the same matches being found. Zero was chosen for the value in the new alphabet since this "character" is more likely to appear in the input. The unused character always results in the next state being state zero, but that fact is not currently used by the code, since special casing takes additional instructions. The characters that do appear in some pattern are mapped to consecutive characters in the new alphabet, starting at 1. This results in a dense packing of next state values in the delta tables and additionally can allow for a smaller number of columns in that table, thus using less memory and better packing into the cache. The size of the new alphabet is the number of used characters plus 1 for the unused catch-all character. The alphabet size is rounded up to the next larger power-of-2 so that multiplication by the alphabet size can be done with a shift. It might be possible to use a multiply instruction, so that the exact alphabet size could be used, which would further reduce the size of the delta tables, increase cache density and not require the specialized search functions. The multiply would likely add 1 cycle to the inner search loop. Since the multiply by alphabet-size is cleverly merged with a mask instruction (in the SINDEX macro), specialized versions of the SCACSearch function are generated for alphabet sizes 256, 128, 64, 32 and 16. This is done by including the file util-mpm-ac-small.c multiple times with a redefined SINDEX macro. A function pointer is then stored in the mpm context for the search function. For alpha bit sizes of 8 or smaller, the number of states usually small, so the DFA is already very small, so there is little difference using the 16 state search function. The SCACSearch function is also specialized by the size of the value stored in the next state (delta) tables, either 16-bits or 32-bits. This removes a conditional inside the Search function. That conditional is only called once, but doesn't hurt to remove it. 16-bits are used for up to 32K states, with the sign bit set for states with matches. Future optimization: The state-has-match values is only needed per state, not per next state, so checking the next-state sign bit could be replaced with reading a different value, at the cost of an additional load, but increasing the 16-bit next state span to 64K. Since the order of the characters in the new alphabet doesn't matter, the new alphabet could be sorted by the frequency of the characters in the expected input stream for that multi-pattern matcher. This would group more frequent characters into the same cache lines, thus increasing the probability of reusing a cache-line. All the next state values for each state live in their own set of cache-lines. With power-of-two sizes alphabets, these don't overlap. So either 32 or 16 character's next states are loaded in each cache line load. If the alphabet size is not an exact power-of-2, then the last cache-line is not completely full and up to 31*2 bytes of that line could be wasted per state. The next state table could be transposed, so that all the next states for a specific character are stored sequentially, this could be better if some characters, for example the unused character, are much more frequent.
12 years ago
}
} /* for (i = 0; i < buflen; i++) */
return matches;
}
#endif /* FUNC_NAME */