|
|
|
/* Copyright (C) 2007-2013 Open Information Security Foundation
|
|
|
|
*
|
|
|
|
* You can copy, redistribute or modify this Program under the terms of
|
|
|
|
* the GNU General Public License version 2 as published by the Free
|
|
|
|
* Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* version 2 along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
|
|
* 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* \author Victor Julien <victor@inliniac.net>
|
|
|
|
*
|
|
|
|
* Generic App-layer parsing functions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "suricata-common.h"
|
|
|
|
#include "debug.h"
|
|
|
|
#include "util-unittest.h"
|
|
|
|
#include "decode.h"
|
|
|
|
#include "threads.h"
|
|
|
|
|
|
|
|
#include "util-print.h"
|
|
|
|
#include "util-pool.h"
|
|
|
|
|
|
|
|
#include "flow-util.h"
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
#include "flow-private.h"
|
|
|
|
|
|
|
|
#include "detect-engine-state.h"
|
|
|
|
#include "detect-engine-port.h"
|
|
|
|
|
|
|
|
#include "stream-tcp.h"
|
|
|
|
#include "stream-tcp-private.h"
|
|
|
|
#include "stream.h"
|
|
|
|
#include "stream-tcp-reassemble.h"
|
|
|
|
|
|
|
|
#include "app-layer.h"
|
|
|
|
#include "app-layer-protos.h"
|
|
|
|
#include "app-layer-parser.h"
|
|
|
|
#include "app-layer-smb.h"
|
|
|
|
#include "app-layer-smb2.h"
|
|
|
|
#include "app-layer-dcerpc.h"
|
|
|
|
#include "app-layer-dcerpc-udp.h"
|
|
|
|
#include "app-layer-htp.h"
|
|
|
|
#include "app-layer-ftp.h"
|
|
|
|
#include "app-layer-ssl.h"
|
|
|
|
#include "app-layer-ssh.h"
|
|
|
|
#include "app-layer-smtp.h"
|
|
|
|
#include "app-layer-dns-udp.h"
|
|
|
|
#include "app-layer-dns-tcp.h"
|
|
|
|
#include "app-layer-modbus.h"
|
|
|
|
#include "app-layer-enip.h"
|
|
|
|
#include "app-layer-dnp3.h"
|
|
|
|
#include "app-layer-nfs-tcp.h"
|
|
|
|
#include "app-layer-nfs-udp.h"
|
|
|
|
#include "app-layer-ntp.h"
|
|
|
|
#include "app-layer-template.h"
|
|
|
|
|
|
|
|
#include "conf.h"
|
|
|
|
#include "util-spm.h"
|
|
|
|
|
|
|
|
#include "util-debug.h"
|
|
|
|
#include "decode-events.h"
|
|
|
|
#include "util-unittest-helper.h"
|
|
|
|
#include "util-validate.h"
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
#include "runmodes.h"
|
|
|
|
|
|
|
|
static GetActiveTxIdFunc AppLayerGetActiveTxIdFuncPtr = NULL;
|
|
|
|
|
|
|
|
struct AppLayerParserThreadCtx_ {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *alproto_local_storage[FLOW_PROTO_MAX][ALPROTO_MAX];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/**
|
|
|
|
* \brief App layer protocol parser context.
|
|
|
|
*/
|
|
|
|
typedef struct AppLayerParserProtoCtx_
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
/* 0 - to_server, 1 - to_client. */
|
|
|
|
AppLayerParserFPtr Parser[2];
|
|
|
|
bool logger;
|
|
|
|
uint32_t logger_bits; /**< registered loggers for this proto */
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
void *(*StateAlloc)(void);
|
|
|
|
void (*StateFree)(void *);
|
|
|
|
void (*StateTransactionFree)(void *, uint64_t);
|
|
|
|
void *(*LocalStorageAlloc)(void);
|
|
|
|
void (*LocalStorageFree)(void *);
|
|
|
|
|
|
|
|
void (*Truncate)(void *, uint8_t);
|
|
|
|
FileContainer *(*StateGetFiles)(void *, uint8_t);
|
|
|
|
AppLayerDecoderEvents *(*StateGetEvents)(void *, uint64_t);
|
|
|
|
int (*StateHasEvents)(void *);
|
|
|
|
|
|
|
|
int (*StateGetProgress)(void *alstate, uint8_t direction);
|
|
|
|
uint64_t (*StateGetTxCnt)(void *alstate);
|
|
|
|
void *(*StateGetTx)(void *alstate, uint64_t tx_id);
|
|
|
|
int (*StateGetProgressCompletionStatus)(uint8_t direction);
|
|
|
|
int (*StateGetEventInfo)(const char *event_name,
|
|
|
|
int *event_id, AppLayerEventType *event_type);
|
|
|
|
|
|
|
|
LoggerId (*StateGetTxLogged)(void *alstate, void *tx);
|
|
|
|
void (*StateSetTxLogged)(void *alstate, void *tx, LoggerId logger);
|
|
|
|
|
|
|
|
int (*StateHasTxDetectState)(void *alstate);
|
|
|
|
DetectEngineState *(*GetTxDetectState)(void *tx);
|
|
|
|
int (*SetTxDetectState)(void *alstate, void *tx, DetectEngineState *);
|
|
|
|
|
mpm: run engines as few times as possible
In various scenarios buffers would be checked my MPM more than
once. This was because the buffers would be inspected for a
certain progress value or higher.
For example, for each packet in a file upload, the engine would
not just rerun the 'http client body' MPM on the new data, it
would also rerun the method, uri, headers, cookie, etc MPMs.
This was obviously inefficent, so this patch changes the logic.
The patch only runs the MPM engines when the progress is exactly
the intended progress. If the progress is beyond the desired
value, it is run once. A tracker is added to the app layer API,
where the completed MPMs are tracked.
Implemented for HTTP, TLS and SSH.
8 years ago
|
|
|
uint64_t (*GetTxMpmIDs)(void *tx);
|
|
|
|
int (*SetTxMpmIDs)(void *tx, uint64_t);
|
|
|
|
|
|
|
|
/* each app-layer has its own value */
|
|
|
|
uint32_t stream_depth;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* Indicates the direction the parser is ready to see the data
|
|
|
|
* the first time for a flow. Values accepted -
|
|
|
|
* STREAM_TOSERVER, STREAM_TOCLIENT */
|
|
|
|
uint8_t first_data_dir;
|
|
|
|
|
|
|
|
/* Option flags such as supporting gaps or not. */
|
|
|
|
uint64_t flags;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
#ifdef UNITTESTS
|
|
|
|
void (*RegisterUnittests)(void);
|
|
|
|
#endif
|
|
|
|
} AppLayerParserProtoCtx;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
typedef struct AppLayerParserCtx_ {
|
|
|
|
AppLayerParserProtoCtx ctxs[FLOW_PROTO_MAX][ALPROTO_MAX];
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
} AppLayerParserCtx;
|
|
|
|
|
|
|
|
struct AppLayerParserState_ {
|
|
|
|
/* coccinelle: AppLayerParserState:flags:APP_LAYER_PARSER_ */
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint8_t flags;
|
|
|
|
|
|
|
|
/* Indicates the current transaction that is being inspected.
|
|
|
|
* We have a var per direction. */
|
|
|
|
uint64_t inspect_id[2];
|
|
|
|
/* Indicates the current transaction being logged. Unlike inspect_id,
|
|
|
|
* we don't need a var per direction since we don't log a transaction
|
|
|
|
* unless we have the entire transaction. */
|
|
|
|
uint64_t log_id;
|
|
|
|
|
|
|
|
uint64_t min_id;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* Used to store decoder events. */
|
|
|
|
AppLayerDecoderEvents *decoder_events;
|
|
|
|
};
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* Static global version of the parser context.
|
|
|
|
* Post 2.0 let's look at changing this to move it out to app-layer.c. */
|
|
|
|
static AppLayerParserCtx alp_ctx;
|
|
|
|
|
app-layer: add flow counters
This adds per flow counters for all
supported protocols.
This results in new data in stats output that looks like:
```
"app-layer": {
"flow": {
"http": 9310,
"ftp": 0,
"smtp": 0,
"tls": 71,
"ssh": 0,
"imap": 0,
"msn": 0,
"smb": 170,
"dcerpc_udp": 0,
"dns_udp": 870,
"dcerpc_tcp": 2,
"dns_tcp": 0
},
},
```
9 years ago
|
|
|
int AppLayerParserProtoIsRegistered(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
uint8_t ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
|
|
|
|
return (alp_ctx.ctxs[ipproto_map][alproto].StateAlloc != NULL) ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
AppLayerParserState *AppLayerParserStateAlloc(void)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
AppLayerParserState *pstate = (AppLayerParserState *)SCMalloc(sizeof(*pstate));
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (pstate == NULL)
|
|
|
|
goto end;
|
|
|
|
memset(pstate, 0, sizeof(*pstate));
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
end:
|
|
|
|
SCReturnPtr(pstate, "AppLayerParserState");
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserStateFree(AppLayerParserState *pstate)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
if (pstate->decoder_events != NULL)
|
|
|
|
AppLayerDecoderEventsFreeEvents(&pstate->decoder_events);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCFree(pstate);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int AppLayerParserSetup(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
memset(&alp_ctx, 0, sizeof(alp_ctx));
|
|
|
|
|
|
|
|
/* set the default tx handler if none was set explicitly */
|
|
|
|
if (AppLayerGetActiveTxIdFuncPtr == NULL) {
|
|
|
|
RegisterAppLayerGetActiveTxIdFunc(AppLayerTransactionGetActiveDetectLog);
|
|
|
|
}
|
|
|
|
|
|
|
|
SCReturnInt(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserPostStreamSetup(void)
|
|
|
|
{
|
|
|
|
AppProto alproto = 0;
|
|
|
|
int flow_proto = 0;
|
|
|
|
|
|
|
|
/* lets set a default value for stream_depth */
|
|
|
|
for (flow_proto = 0; flow_proto < FLOW_PROTO_DEFAULT; flow_proto++) {
|
|
|
|
for (alproto = 0; alproto < ALPROTO_MAX; alproto++) {
|
|
|
|
alp_ctx.ctxs[flow_proto][alproto].stream_depth =
|
|
|
|
stream_config.reassembly_depth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int AppLayerParserDeSetup(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
SMTPParserCleanup();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturnInt(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
AppLayerParserThreadCtx *AppLayerParserThreadCtxAlloc(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
AppProto alproto = 0;
|
|
|
|
int flow_proto = 0;
|
|
|
|
AppLayerParserThreadCtx *tctx;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
tctx = SCMalloc(sizeof(*tctx));
|
|
|
|
if (tctx == NULL)
|
|
|
|
goto end;
|
|
|
|
memset(tctx, 0, sizeof(*tctx));
|
|
|
|
|
|
|
|
for (flow_proto = 0; flow_proto < FLOW_PROTO_DEFAULT; flow_proto++) {
|
|
|
|
for (alproto = 0; alproto < ALPROTO_MAX; alproto++) {
|
|
|
|
uint8_t ipproto = FlowGetReverseProtoMapping(flow_proto);
|
|
|
|
|
|
|
|
tctx->alproto_local_storage[flow_proto][alproto] =
|
|
|
|
AppLayerParserGetProtocolParserLocalStorage(ipproto, alproto);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
end:
|
|
|
|
SCReturnPtr(tctx, "void *");
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserThreadCtxFree(AppLayerParserThreadCtx *tctx)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
AppProto alproto = 0;
|
|
|
|
int flow_proto = 0;
|
|
|
|
|
|
|
|
for (flow_proto = 0; flow_proto < FLOW_PROTO_DEFAULT; flow_proto++) {
|
|
|
|
for (alproto = 0; alproto < ALPROTO_MAX; alproto++) {
|
|
|
|
uint8_t ipproto = FlowGetReverseProtoMapping(flow_proto);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
AppLayerParserDestroyProtocolParserLocalStorage(ipproto, alproto,
|
|
|
|
tctx->alproto_local_storage[flow_proto][alproto]);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SCFree(tctx);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief check if a parser is enabled in the config
|
|
|
|
* Returns enabled always if: were running unittests and
|
|
|
|
* when compiled with --enable-afl
|
|
|
|
*/
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int AppLayerParserConfParserEnabled(const char *ipproto,
|
|
|
|
const char *alproto_name)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
int enabled = 1;
|
|
|
|
char param[100];
|
|
|
|
ConfNode *node;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_APPLAYER
|
|
|
|
goto enabled;
|
|
|
|
#endif
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (RunmodeIsUnittests())
|
|
|
|
goto enabled;
|
|
|
|
|
|
|
|
r = snprintf(param, sizeof(param), "%s%s%s", "app-layer.protocols.",
|
|
|
|
alproto_name, ".enabled");
|
|
|
|
if (r < 0) {
|
|
|
|
SCLogError(SC_ERR_FATAL, "snprintf failure.");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
} else if (r > (int)sizeof(param)) {
|
|
|
|
SCLogError(SC_ERR_FATAL, "buffer not big enough to write param.");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
node = ConfGetNode(param);
|
|
|
|
if (node == NULL) {
|
|
|
|
SCLogDebug("Entry for %s not found.", param);
|
|
|
|
r = snprintf(param, sizeof(param), "%s%s%s%s%s", "app-layer.protocols.",
|
|
|
|
alproto_name, ".", ipproto, ".enabled");
|
|
|
|
if (r < 0) {
|
|
|
|
SCLogError(SC_ERR_FATAL, "snprintf failure.");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
} else if (r > (int)sizeof(param)) {
|
|
|
|
SCLogError(SC_ERR_FATAL, "buffer not big enough to write param.");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
|
|
|
|
node = ConfGetNode(param);
|
|
|
|
if (node == NULL) {
|
|
|
|
SCLogDebug("Entry for %s not found.", param);
|
|
|
|
goto enabled;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ConfValIsTrue(node->val)) {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
goto enabled;
|
|
|
|
} else if (ConfValIsFalse(node->val)) {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
goto disabled;
|
|
|
|
} else if (strcasecmp(node->val, "detection-only") == 0) {
|
|
|
|
goto disabled;
|
|
|
|
} else {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCLogError(SC_ERR_FATAL, "Invalid value found for %s.", param);
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
disabled:
|
|
|
|
enabled = 0;
|
|
|
|
enabled:
|
|
|
|
SCReturnInt(enabled);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/***** Parser related registration *****/
|
|
|
|
|
|
|
|
int AppLayerParserRegisterParser(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint8_t direction,
|
|
|
|
AppLayerParserFPtr Parser)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
Parser[(direction & STREAM_TOSERVER) ? 0 : 1] = Parser;
|
|
|
|
|
|
|
|
SCReturnInt(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterParserAcceptableDataDirection(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint8_t direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].first_data_dir |=
|
|
|
|
(direction & (STREAM_TOSERVER | STREAM_TOCLIENT));
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterOptionFlags(uint8_t ipproto, AppProto alproto,
|
|
|
|
uint64_t flags)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].flags |= flags;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterStateFuncs(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *(*StateAlloc)(void),
|
|
|
|
void (*StateFree)(void *))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateAlloc =
|
|
|
|
StateAlloc;
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateFree =
|
|
|
|
StateFree;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterLocalStorageFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *(*LocalStorageAlloc)(void),
|
|
|
|
void (*LocalStorageFree)(void *))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].LocalStorageAlloc =
|
|
|
|
LocalStorageAlloc;
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].LocalStorageFree =
|
|
|
|
LocalStorageFree;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetFilesFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
FileContainer *(*StateGetFiles)(void *, uint8_t))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateGetFiles =
|
|
|
|
StateGetFiles;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetEventsFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerDecoderEvents *(*StateGetEvents)(void *, uint64_t))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateGetEvents =
|
|
|
|
StateGetEvents;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterHasEventsFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int (*StateHasEvents)(void *))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateHasEvents =
|
|
|
|
StateHasEvents;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterLoggerFuncs(uint8_t ipproto, AppProto alproto,
|
|
|
|
LoggerId (*StateGetTxLogged)(void *, void *),
|
|
|
|
void (*StateSetTxLogged)(void *, void *, LoggerId))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateGetTxLogged =
|
|
|
|
StateGetTxLogged;
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateSetTxLogged =
|
|
|
|
StateSetTxLogged;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterLoggerBits(uint8_t ipproto, AppProto alproto, LoggerId bits)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].logger_bits = bits;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterLogger(uint8_t ipproto, AppProto alproto)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].logger = true;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterTruncateFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void (*Truncate)(void *, uint8_t))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].Truncate = Truncate;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetStateProgressFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int (*StateGetProgress)(void *alstate, uint8_t direction))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetProgress = StateGetProgress;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterTxFreeFunc(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void (*StateTransactionFree)(void *, uint64_t))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateTransactionFree = StateTransactionFree;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetTxCnt(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint64_t (*StateGetTxCnt)(void *alstate))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetTxCnt = StateGetTxCnt;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetTx(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *(StateGetTx)(void *alstate, uint64_t tx_id))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetTx = StateGetTx;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetStateProgressCompletionStatus(AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int (*StateGetProgressCompletionStatus)(uint8_t direction))
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto].
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
StateGetProgressCompletionStatus = StateGetProgressCompletionStatus;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterGetEventInfo(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int (*StateGetEventInfo)(const char *event_name, int *event_id,
|
|
|
|
AppLayerEventType *event_type))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetEventInfo = StateGetEventInfo;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterDetectStateFuncs(uint8_t ipproto, AppProto alproto,
|
|
|
|
int (*StateHasTxDetectState)(void *alstate),
|
|
|
|
DetectEngineState *(*GetTxDetectState)(void *tx),
|
|
|
|
int (*SetTxDetectState)(void *alstate, void *tx, DetectEngineState *))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateHasTxDetectState = StateHasTxDetectState;
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxDetectState = GetTxDetectState;
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].SetTxDetectState = SetTxDetectState;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
mpm: run engines as few times as possible
In various scenarios buffers would be checked my MPM more than
once. This was because the buffers would be inspected for a
certain progress value or higher.
For example, for each packet in a file upload, the engine would
not just rerun the 'http client body' MPM on the new data, it
would also rerun the method, uri, headers, cookie, etc MPMs.
This was obviously inefficent, so this patch changes the logic.
The patch only runs the MPM engines when the progress is exactly
the intended progress. If the progress is beyond the desired
value, it is run once. A tracker is added to the app layer API,
where the completed MPMs are tracked.
Implemented for HTTP, TLS and SSH.
8 years ago
|
|
|
void AppLayerParserRegisterMpmIDsFuncs(uint8_t ipproto, AppProto alproto,
|
|
|
|
uint64_t(*GetTxMpmIDs)(void *tx),
|
|
|
|
int (*SetTxMpmIDs)(void *tx, uint64_t))
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxMpmIDs = GetTxMpmIDs;
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].SetTxMpmIDs = SetTxMpmIDs;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/***** Get and transaction functions *****/
|
|
|
|
|
|
|
|
void *AppLayerParserGetProtocolParserLocalStorage(uint8_t ipproto, AppProto alproto)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
void * r = NULL;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
LocalStorageAlloc != NULL)
|
|
|
|
{
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
LocalStorageAlloc();
|
|
|
|
}
|
|
|
|
|
|
|
|
SCReturnPtr(r, "void *");
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserDestroyProtocolParserLocalStorage(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *local_data)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
LocalStorageFree != NULL)
|
|
|
|
{
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
LocalStorageFree(local_data);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetTxLogged(uint8_t ipproto, AppProto alproto,
|
|
|
|
void *alstate, void *tx, LoggerId logger)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateSetTxLogged != NULL) {
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateSetTxLogged(alstate, tx, logger);
|
|
|
|
}
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
LoggerId AppLayerParserGetTxLogged(const Flow *f,
|
|
|
|
void *alstate, void *tx)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
LoggerId r = 0;
|
|
|
|
if (alp_ctx.ctxs[f->protomap][f->alproto].StateGetTxLogged != NULL) {
|
|
|
|
r = alp_ctx.ctxs[f->protomap][f->alproto].
|
|
|
|
StateGetTxLogged(alstate, tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
SCReturnUInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t AppLayerParserGetTransactionLogId(AppLayerParserState *pstate)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
SCReturnCT((pstate == NULL) ? 0 : pstate->log_id, "uint64_t");
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetTransactionLogId(AppLayerParserState *pstate, uint64_t tx_id)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
if (pstate != NULL)
|
|
|
|
pstate->log_id = tx_id;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t AppLayerParserGetTransactionInspectId(AppLayerParserState *pstate, uint8_t direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
if (pstate == NULL)
|
|
|
|
SCReturnCT(0ULL, "uint64_t");
|
|
|
|
|
|
|
|
SCReturnCT(pstate->inspect_id[direction & STREAM_TOSERVER ? 0 : 1], "uint64_t");
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetTransactionInspectId(const Flow *f, AppLayerParserState *pstate,
|
|
|
|
void *alstate, const uint8_t flags)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
const int direction = (flags & STREAM_TOSERVER) ? 0 : 1;
|
|
|
|
const uint64_t total_txs = AppLayerParserGetTxCnt(f, alstate);
|
|
|
|
uint64_t idx = AppLayerParserGetTransactionInspectId(pstate, flags);
|
|
|
|
const int state_done_progress = AppLayerParserGetStateProgressCompletionStatus(f->alproto, flags);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
for (; idx < total_txs; idx++) {
|
|
|
|
void *tx = AppLayerParserGetTx(f->proto, f->alproto, alstate, idx);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (tx == NULL)
|
|
|
|
continue;
|
|
|
|
int state_progress = AppLayerParserGetStateProgress(f->proto, f->alproto, tx, flags);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (state_progress >= state_done_progress)
|
|
|
|
continue;
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pstate->inspect_id[direction] = idx;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
AppLayerDecoderEvents *AppLayerParserGetDecoderEvents(AppLayerParserState *pstate)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
SCReturnPtr(pstate->decoder_events,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
"AppLayerDecoderEvents *");
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetDecoderEvents(AppLayerParserState *pstate, AppLayerDecoderEvents *devents)
|
|
|
|
{
|
|
|
|
pstate->decoder_events = devents;
|
|
|
|
}
|
|
|
|
|
|
|
|
AppLayerDecoderEvents *AppLayerParserGetEventsByTx(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *alstate, uint64_t tx_id)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerDecoderEvents *ptr = NULL;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetEvents != NULL)
|
|
|
|
{
|
|
|
|
ptr = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetEvents(alstate, tx_id);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturnPtr(ptr, "AppLayerDecoderEvents *");
|
|
|
|
}
|
|
|
|
|
|
|
|
FileContainer *AppLayerParserGetFiles(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *alstate, uint8_t direction)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
FileContainer *ptr = NULL;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetFiles != NULL)
|
|
|
|
{
|
|
|
|
ptr = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetFiles(alstate, direction);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturnPtr(ptr, "FileContainer *");
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief active TX retrieval for normal ops: so with detection and logging
|
|
|
|
*
|
|
|
|
* \retval tx_id lowest tx_id that still needs work */
|
|
|
|
uint64_t AppLayerTransactionGetActiveDetectLog(Flow *f, uint8_t flags)
|
|
|
|
{
|
|
|
|
AppLayerParserProtoCtx *p = &alp_ctx.ctxs[f->protomap][f->alproto];
|
|
|
|
uint64_t log_id = f->alparser->log_id;
|
|
|
|
uint64_t inspect_id = f->alparser->inspect_id[flags & STREAM_TOSERVER ? 0 : 1];
|
|
|
|
if (p->logger == true) {
|
|
|
|
return (log_id < inspect_id) ? log_id : inspect_id;
|
|
|
|
} else {
|
|
|
|
return inspect_id;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief active TX retrieval for logging only: so NO detection
|
|
|
|
*
|
|
|
|
* If the logger is enabled, we simply return the log_id here.
|
|
|
|
*
|
|
|
|
* Otherwise, we go look for the tx id. There probably is no point
|
|
|
|
* in running this function in that case though. With no detection
|
|
|
|
* and no logging, why run a parser in the first place?
|
|
|
|
**/
|
|
|
|
uint64_t AppLayerTransactionGetActiveLogOnly(Flow *f, uint8_t flags)
|
|
|
|
{
|
|
|
|
AppLayerParserProtoCtx *p = &alp_ctx.ctxs[f->protomap][f->alproto];
|
|
|
|
|
|
|
|
if (p->logger == true) {
|
|
|
|
uint64_t log_id = f->alparser->log_id;
|
|
|
|
SCLogDebug("returning %"PRIu64, log_id);
|
|
|
|
return log_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* logger is disabled, return highest 'complete' tx id */
|
|
|
|
const uint64_t total_txs = AppLayerParserGetTxCnt(f, f->alstate);
|
|
|
|
uint64_t idx = f->alparser->min_id;
|
|
|
|
const int state_done_progress = AppLayerParserGetStateProgressCompletionStatus(f->alproto, flags);
|
|
|
|
|
|
|
|
for (; idx < total_txs; idx++) {
|
|
|
|
void *tx = AppLayerParserGetTx(f->proto, f->alproto, f->alstate, idx);
|
|
|
|
if (tx == NULL)
|
|
|
|
continue;
|
|
|
|
const int state_progress = AppLayerParserGetStateProgress(f->proto, f->alproto, tx, flags);
|
|
|
|
if (state_progress >= state_done_progress)
|
|
|
|
continue;
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
SCLogDebug("returning %"PRIu64, idx);
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RegisterAppLayerGetActiveTxIdFunc(GetActiveTxIdFunc FuncPtr)
|
|
|
|
{
|
|
|
|
//BUG_ON(AppLayerGetActiveTxIdFuncPtr != NULL);
|
|
|
|
AppLayerGetActiveTxIdFuncPtr = FuncPtr;
|
|
|
|
SCLogDebug("AppLayerGetActiveTxIdFuncPtr is now %p", AppLayerGetActiveTxIdFuncPtr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief Get 'active' tx id, meaning the lowest id that still need work.
|
|
|
|
*
|
|
|
|
* \retval id tx id
|
|
|
|
*/
|
|
|
|
static uint64_t AppLayerTransactionGetActive(Flow *f, uint8_t flags)
|
|
|
|
{
|
|
|
|
BUG_ON(AppLayerGetActiveTxIdFuncPtr == NULL);
|
|
|
|
|
|
|
|
return AppLayerGetActiveTxIdFuncPtr(f, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief remove obsolete (inspected and logged) transactions
|
|
|
|
*/
|
|
|
|
static void AppLayerParserTransactionsCleanup(Flow *f)
|
|
|
|
{
|
|
|
|
DEBUG_ASSERT_FLOW_LOCKED(f);
|
|
|
|
|
|
|
|
AppLayerParserProtoCtx *p = &alp_ctx.ctxs[f->protomap][f->alproto];
|
|
|
|
if (unlikely(p->StateTransactionFree == NULL))
|
|
|
|
return;
|
|
|
|
|
|
|
|
const uint64_t tx_id_ts = AppLayerTransactionGetActive(f, STREAM_TOSERVER);
|
|
|
|
const uint64_t tx_id_tc = AppLayerTransactionGetActive(f, STREAM_TOCLIENT);
|
|
|
|
|
|
|
|
uint64_t min = MIN(tx_id_ts, tx_id_tc);
|
|
|
|
if (min > 0) {
|
|
|
|
uint64_t x = f->alparser->min_id;
|
|
|
|
for ( ; x < min - 1; x++) {
|
|
|
|
void *tx = AppLayerParserGetTx(f->proto, f->alproto, f->alstate, x);
|
|
|
|
if (tx != 0) {
|
|
|
|
SCLogDebug("while freeing %"PRIu64", also free TX at %"PRIu64, min - 1, x);
|
|
|
|
p->StateTransactionFree(f->alstate, x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SCLogDebug("freeing %"PRIu64" %p", min - 1, p->StateTransactionFree);
|
|
|
|
|
|
|
|
if ((AppLayerParserGetTx(f->proto, f->alproto, f->alstate, min - 1))) {
|
|
|
|
p->StateTransactionFree(f->alstate, min - 1);
|
|
|
|
}
|
|
|
|
f->alparser->min_id = min - 1;
|
|
|
|
SCLogDebug("f->alparser->min_id %"PRIu64, f->alparser->min_id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define IS_DISRUPTED(flags) \
|
|
|
|
((flags) & (STREAM_DEPTH|STREAM_GAP))
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief get the progress value for a tx/protocol
|
|
|
|
*
|
|
|
|
* If the stream is disrupted, we return the 'completion' value.
|
|
|
|
*/
|
|
|
|
int AppLayerParserGetStateProgress(uint8_t ipproto, AppProto alproto,
|
|
|
|
void *alstate, uint8_t flags)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
int r = 0;
|
|
|
|
if (unlikely(IS_DISRUPTED(flags))) {
|
|
|
|
r = alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto].
|
|
|
|
StateGetProgressCompletionStatus(flags);
|
|
|
|
} else {
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetProgress(alstate, flags);
|
|
|
|
}
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t AppLayerParserGetTxCnt(const Flow *f, void *alstate)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
uint64_t r = 0;
|
|
|
|
r = alp_ctx.ctxs[f->protomap][f->alproto].
|
|
|
|
StateGetTxCnt(alstate);
|
|
|
|
SCReturnCT(r, "uint64_t");
|
|
|
|
}
|
|
|
|
|
|
|
|
void *AppLayerParserGetTx(uint8_t ipproto, AppProto alproto, void *alstate, uint64_t tx_id)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
void * r = NULL;
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
StateGetTx(alstate, tx_id);
|
|
|
|
SCReturnPtr(r, "void *");
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserGetStateProgressCompletionStatus(AppProto alproto,
|
|
|
|
uint8_t direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
int r = 0;
|
|
|
|
r = alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto].
|
|
|
|
StateGetProgressCompletionStatus(direction);
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserGetEventInfo(uint8_t ipproto, AppProto alproto, const char *event_name,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int *event_id, AppLayerEventType *event_type)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
int r = (alp_ctx.ctxs[ipproto_map][alproto].StateGetEventInfo == NULL) ?
|
|
|
|
-1 : alp_ctx.ctxs[ipproto_map][alproto].StateGetEventInfo(event_name, event_id, event_type);
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t AppLayerParserGetFirstDataDir(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
uint8_t r = 0;
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
first_data_dir;
|
|
|
|
SCReturnCT(r, "uint8_t");
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t AppLayerParserGetTransactionActive(const Flow *f,
|
|
|
|
AppLayerParserState *pstate, uint8_t direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint64_t active_id;
|
|
|
|
|
|
|
|
uint64_t log_id = pstate->log_id;
|
|
|
|
uint64_t inspect_id = pstate->inspect_id[direction & STREAM_TOSERVER ? 0 : 1];
|
|
|
|
if (alp_ctx.ctxs[f->protomap][f->alproto].logger == true) {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
active_id = (log_id < inspect_id) ? log_id : inspect_id;
|
|
|
|
} else {
|
|
|
|
active_id = inspect_id;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturnCT(active_id, "uint64_t");
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserSupportsFiles(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateGetFiles != NULL)
|
|
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserSupportsTxDetectState(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxDetectState != NULL)
|
|
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserHasTxDetectState(uint8_t ipproto, AppProto alproto, void *alstate)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
SCEnter();
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateHasTxDetectState == NULL)
|
|
|
|
return -ENOSYS;
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].StateHasTxDetectState(alstate);
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
DetectEngineState *AppLayerParserGetTxDetectState(uint8_t ipproto, AppProto alproto, void *tx)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
DetectEngineState *s;
|
|
|
|
s = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxDetectState(tx);
|
|
|
|
SCReturnPtr(s, "DetectEngineState");
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserSetTxDetectState(const Flow *f,
|
|
|
|
void *alstate, void *tx, DetectEngineState *s)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
SCEnter();
|
|
|
|
if ((alp_ctx.ctxs[f->protomap][f->alproto].GetTxDetectState(tx) != NULL))
|
|
|
|
SCReturnInt(-EBUSY);
|
|
|
|
r = alp_ctx.ctxs[f->protomap][f->alproto].SetTxDetectState(alstate, tx, s);
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
mpm: run engines as few times as possible
In various scenarios buffers would be checked my MPM more than
once. This was because the buffers would be inspected for a
certain progress value or higher.
For example, for each packet in a file upload, the engine would
not just rerun the 'http client body' MPM on the new data, it
would also rerun the method, uri, headers, cookie, etc MPMs.
This was obviously inefficent, so this patch changes the logic.
The patch only runs the MPM engines when the progress is exactly
the intended progress. If the progress is beyond the desired
value, it is run once. A tracker is added to the app layer API,
where the completed MPMs are tracked.
Implemented for HTTP, TLS and SSH.
8 years ago
|
|
|
uint64_t AppLayerParserGetTxMpmIDs(uint8_t ipproto, AppProto alproto, void *tx)
|
|
|
|
{
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxMpmIDs != NULL) {
|
|
|
|
return alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].GetTxMpmIDs(tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0ULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserSetTxMpmIDs(uint8_t ipproto, AppProto alproto, void *tx, uint64_t mpm_ids)
|
|
|
|
{
|
|
|
|
int r = 0;
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].SetTxMpmIDs != NULL) {
|
|
|
|
r = alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].SetTxMpmIDs(tx, mpm_ids);
|
|
|
|
}
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/***** General *****/
|
|
|
|
|
|
|
|
int AppLayerParserParse(ThreadVars *tv, AppLayerParserThreadCtx *alp_tctx, Flow *f, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint8_t flags, uint8_t *input, uint32_t input_len)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
#ifdef DEBUG_VALIDATION
|
|
|
|
BUG_ON(f->protomap != FlowGetProtoMapping(f->proto));
|
|
|
|
#endif
|
|
|
|
AppLayerParserState *pstate = NULL;
|
|
|
|
AppLayerParserProtoCtx *p = &alp_ctx.ctxs[f->protomap][alproto];
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *alstate = NULL;
|
|
|
|
uint64_t p_tx_cnt = 0;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* we don't have the parser registered for this protocol */
|
|
|
|
if (p->StateAlloc == NULL)
|
|
|
|
goto end;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (flags & STREAM_GAP) {
|
|
|
|
if (!(p->flags & APP_LAYER_PARSER_OPT_ACCEPT_GAPS)) {
|
|
|
|
SCLogDebug("app-layer parser does not accept gaps");
|
|
|
|
if (f->alstate != NULL) {
|
|
|
|
AppLayerParserStreamTruncated(f->proto, alproto, f->alstate,
|
|
|
|
flags);
|
|
|
|
}
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* Get the parser state (if any) */
|
|
|
|
pstate = f->alparser;
|
|
|
|
if (pstate == NULL) {
|
|
|
|
f->alparser = pstate = AppLayerParserStateAlloc();
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (pstate == NULL)
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (flags & STREAM_EOF)
|
|
|
|
AppLayerParserStateSetFlag(pstate, APP_LAYER_PARSER_EOF);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
alstate = f->alstate;
|
|
|
|
if (alstate == NULL) {
|
|
|
|
f->alstate = alstate = p->StateAlloc();
|
|
|
|
if (alstate == NULL)
|
|
|
|
goto error;
|
|
|
|
SCLogDebug("alloced new app layer state %p (name %s)",
|
|
|
|
alstate, AppLayerGetProtoName(f->alproto));
|
|
|
|
} else {
|
|
|
|
SCLogDebug("using existing app layer state %p (name %s))",
|
|
|
|
alstate, AppLayerGetProtoName(f->alproto));
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
if (AppLayerParserProtocolIsTxAware(f->proto, alproto)) {
|
|
|
|
p_tx_cnt = AppLayerParserGetTxCnt(f, f->alstate);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* invoke the recursive parser, but only on data. We may get empty msgs on EOF */
|
|
|
|
if (input_len > 0 || (flags & STREAM_EOF)) {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* invoke the parser */
|
|
|
|
if (p->Parser[(flags & STREAM_TOSERVER) ? 0 : 1](f, alstate, pstate,
|
|
|
|
input, input_len,
|
|
|
|
alp_tctx->alproto_local_storage[f->protomap][alproto]) < 0)
|
|
|
|
{
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
/* set the packets to no inspection and reassembly if required */
|
|
|
|
if (pstate->flags & APP_LAYER_PARSER_NO_INSPECTION) {
|
|
|
|
AppLayerParserSetEOF(pstate);
|
|
|
|
FlowSetNoPayloadInspectionFlag(f);
|
|
|
|
|
|
|
|
if (f->proto == IPPROTO_TCP) {
|
|
|
|
StreamTcpDisableAppLayer(f);
|
|
|
|
|
|
|
|
/* Set the no reassembly flag for both the stream in this TcpSession */
|
|
|
|
if (pstate->flags & APP_LAYER_PARSER_NO_REASSEMBLY) {
|
|
|
|
/* Used only if it's TCP */
|
|
|
|
TcpSession *ssn = f->protoctx;
|
|
|
|
if (ssn != NULL) {
|
|
|
|
StreamTcpSetSessionNoReassemblyFlag(ssn,
|
|
|
|
flags & STREAM_TOCLIENT ? 1 : 0);
|
|
|
|
StreamTcpSetSessionNoReassemblyFlag(ssn,
|
|
|
|
flags & STREAM_TOSERVER ? 1 : 0);
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
/* Set the bypass flag for both the stream in this TcpSession */
|
|
|
|
if (pstate->flags & APP_LAYER_PARSER_BYPASS_READY) {
|
|
|
|
/* Used only if it's TCP */
|
|
|
|
TcpSession *ssn = f->protoctx;
|
|
|
|
if (ssn != NULL) {
|
|
|
|
StreamTcpSetSessionBypassFlag(ssn);
|
|
|
|
}
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In cases like HeartBleed for TLS we need to inspect AppLayer but not Payload */
|
|
|
|
if (!(f->flags & FLOW_NOPAYLOAD_INSPECTION) && pstate->flags & APP_LAYER_PARSER_NO_INSPECTION_PAYLOAD) {
|
|
|
|
FlowSetNoPayloadInspectionFlag(f);
|
|
|
|
/* Set the no reassembly flag for both the stream in this TcpSession */
|
|
|
|
if (f->proto == IPPROTO_TCP) {
|
|
|
|
/* Used only if it's TCP */
|
|
|
|
TcpSession *ssn = f->protoctx;
|
|
|
|
if (ssn != NULL) {
|
|
|
|
StreamTcpSetDisableRawReassemblyFlag(ssn, 0);
|
|
|
|
StreamTcpSetDisableRawReassemblyFlag(ssn, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (AppLayerParserProtocolIsTxAware(f->proto, alproto)) {
|
|
|
|
if (likely(tv)) {
|
|
|
|
uint64_t cur_tx_cnt = AppLayerParserGetTxCnt(f, f->alstate);
|
|
|
|
if (cur_tx_cnt > p_tx_cnt) {
|
|
|
|
AppLayerIncTxCounter(tv, f, cur_tx_cnt - p_tx_cnt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* next, see if we can get rid of transactions now */
|
|
|
|
AppLayerParserTransactionsCleanup(f);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
/* stream truncated, inform app layer */
|
|
|
|
if (flags & STREAM_DEPTH)
|
|
|
|
AppLayerParserStreamTruncated(f->proto, alproto, alstate, flags);
|
|
|
|
|
|
|
|
end:
|
|
|
|
SCReturnInt(0);
|
|
|
|
error:
|
|
|
|
/* Set the no app layer inspection flag for both
|
|
|
|
* the stream in this Flow */
|
|
|
|
if (f->proto == IPPROTO_TCP) {
|
|
|
|
StreamTcpDisableAppLayer(f);
|
|
|
|
}
|
|
|
|
AppLayerParserSetEOF(pstate);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturnInt(-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetEOF(AppLayerParserState *pstate)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (pstate == NULL)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
AppLayerParserStateSetFlag(pstate, APP_LAYER_PARSER_EOF);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
end:
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AppLayerParserHasDecoderEvents(const Flow *f,
|
|
|
|
void *alstate, AppLayerParserState *pstate,
|
|
|
|
const uint8_t flags)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (alstate == NULL || pstate == NULL)
|
|
|
|
goto not_present;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerDecoderEvents *decoder_events;
|
|
|
|
uint64_t tx_id;
|
|
|
|
uint64_t max_id;
|
|
|
|
|
|
|
|
if (AppLayerParserProtocolIsTxEventAware(f->proto, f->alproto)) {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* fast path if supported by alproto */
|
|
|
|
if (alp_ctx.ctxs[f->protomap][f->alproto].StateHasEvents != NULL) {
|
|
|
|
if (alp_ctx.ctxs[f->protomap][f->alproto].
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
StateHasEvents(alstate) == 1)
|
|
|
|
{
|
|
|
|
goto present;
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
} else {
|
|
|
|
/* check each tx */
|
|
|
|
tx_id = AppLayerParserGetTransactionInspectId(pstate, flags);
|
|
|
|
max_id = AppLayerParserGetTxCnt(f, alstate);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
for ( ; tx_id < max_id; tx_id++) {
|
|
|
|
decoder_events = AppLayerParserGetEventsByTx(f->proto, f->alproto, alstate, tx_id);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (decoder_events && decoder_events->cnt)
|
|
|
|
goto present;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
decoder_events = AppLayerParserGetDecoderEvents(pstate);
|
|
|
|
if (decoder_events && decoder_events->cnt)
|
|
|
|
goto present;
|
|
|
|
|
|
|
|
/* if we have reached here, we don't have events */
|
|
|
|
not_present:
|
|
|
|
return false;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
present:
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief simpler way to globally test if a alproto is registered
|
|
|
|
* and fully enabled in the configuration.
|
|
|
|
*/
|
|
|
|
int AppLayerParserIsTxAware(AppProto alproto)
|
|
|
|
{
|
|
|
|
return (alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto]
|
|
|
|
.StateGetProgressCompletionStatus != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserProtocolIsTxAware(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
int r = (alp_ctx.ctxs[ipproto_map][alproto].StateGetTx == NULL) ? 0 : 1;
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserProtocolIsTxEventAware(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
int r = (alp_ctx.ctxs[ipproto_map][alproto].StateGetEvents == NULL) ? 0 : 1;
|
|
|
|
SCReturnInt(r);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserProtocolSupportsTxs(uint8_t ipproto, AppProto alproto)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
int r = (alp_ctx.ctxs[ipproto_map][alproto].StateTransactionFree == NULL) ? 0 : 1;
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserProtocolHasLogger(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
int r = (alp_ctx.ctxs[ipproto_map][alproto].logger == false) ? 0 : 1;
|
|
|
|
SCReturnInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
LoggerId AppLayerParserProtocolGetLoggerBits(uint8_t ipproto, AppProto alproto)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
const int ipproto_map = FlowGetProtoMapping(ipproto);
|
|
|
|
LoggerId r = alp_ctx.ctxs[ipproto_map][alproto].logger_bits;
|
|
|
|
SCReturnUInt(r);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserTriggerRawStreamReassembly(Flow *f, int direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
SCLogDebug("f %p tcp %p direction %d", f, f ? f->protoctx : NULL, direction);
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (f != NULL && f->protoctx != NULL)
|
|
|
|
StreamTcpReassembleTriggerRawReassembly(f->protoctx, direction);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserSetStreamDepth(uint8_t ipproto, AppProto alproto, uint32_t stream_depth)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].stream_depth = stream_depth;
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t AppLayerParserGetStreamDepth(const Flow *f)
|
|
|
|
{
|
|
|
|
SCReturnInt(alp_ctx.ctxs[f->protomap][f->alproto].stream_depth);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/***** Cleanup *****/
|
|
|
|
|
|
|
|
void AppLayerParserStateCleanup(const Flow *f, void *alstate,
|
|
|
|
AppLayerParserState *pstate)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
|
|
|
AppLayerParserProtoCtx *ctx = &alp_ctx.ctxs[f->protomap][f->alproto];
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (ctx->StateFree != NULL && alstate != NULL)
|
|
|
|
ctx->StateFree(alstate);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/* free the app layer parser api state */
|
|
|
|
if (pstate != NULL)
|
|
|
|
AppLayerParserStateFree(pstate);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ValidateParserProtoDump(AppProto alproto, uint8_t ipproto)
|
|
|
|
{
|
|
|
|
uint8_t map = FlowGetProtoMapping(ipproto);
|
|
|
|
const AppLayerParserProtoCtx *ctx = &alp_ctx.ctxs[map][alproto];
|
|
|
|
const AppLayerParserProtoCtx *ctx_def = &alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto];
|
|
|
|
printf("ERROR: incomplete app-layer registration\n");
|
|
|
|
printf("AppLayer protocol %s ipproto %u\n", AppProtoToString(alproto), ipproto);
|
|
|
|
printf("- flags %"PRIx64"\n", ctx->flags);
|
|
|
|
printf("- first_data_dir %"PRIx8"\n", ctx->first_data_dir);
|
|
|
|
printf("Mandatory:\n");
|
|
|
|
printf("- Parser[0] %p Parser[1] %p\n", ctx->Parser[0], ctx->Parser[1]);
|
|
|
|
printf("- StateAlloc %p StateFree %p\n", ctx->StateAlloc, ctx->StateFree);
|
|
|
|
printf("- StateGetTx %p StateGetTxCnt %p StateTransactionFree %p\n",
|
|
|
|
ctx->StateGetTx, ctx->StateGetTxCnt, ctx->StateTransactionFree);
|
|
|
|
printf("- StateGetProgress %p StateGetProgressCompletionStatus %p\n", ctx->StateGetProgress, ctx_def->StateGetProgressCompletionStatus);
|
|
|
|
printf("- GetTxDetectState %p SetTxDetectState %p\n", ctx->GetTxDetectState, ctx->SetTxDetectState);
|
|
|
|
printf("Optional:\n");
|
|
|
|
printf("- StateHasTxDetectState %p\n", ctx->StateHasTxDetectState);
|
|
|
|
printf("- LocalStorageAlloc %p LocalStorageFree %p\n", ctx->LocalStorageAlloc, ctx->LocalStorageFree);
|
|
|
|
printf("- StateGetTxLogged %p StateSetTxLogged %p\n", ctx->StateGetTxLogged, ctx->StateSetTxLogged);
|
|
|
|
printf("- SetTxMpmIDs %p GetTxMpmIDs %p\n", ctx->SetTxMpmIDs, ctx->GetTxMpmIDs);
|
|
|
|
printf("- StateGetEvents %p StateHasEvents %p StateGetEventInfo %p\n", ctx->StateGetEvents, ctx->StateHasEvents, ctx->StateGetEventInfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define BOTH_SET(a, b) ((a) != NULL && (b) != NULL)
|
|
|
|
#define BOTH_SET_OR_BOTH_UNSET(a, b) (((a) == NULL && (b) == NULL) || ((a) != NULL && (b) != NULL))
|
|
|
|
#define THREE_SET_OR_THREE_UNSET(a, b, c) (((a) == NULL && (b) == NULL && (c) == NULL) || ((a) != NULL && (b) != NULL && (c) != NULL))
|
|
|
|
|
|
|
|
static void ValidateParserProto(AppProto alproto, uint8_t ipproto)
|
|
|
|
{
|
|
|
|
uint8_t map = FlowGetProtoMapping(ipproto);
|
|
|
|
const AppLayerParserProtoCtx *ctx = &alp_ctx.ctxs[map][alproto];
|
|
|
|
const AppLayerParserProtoCtx *ctx_def = &alp_ctx.ctxs[FLOW_PROTO_DEFAULT][alproto];
|
|
|
|
|
|
|
|
if (ctx->Parser[0] == NULL && ctx->Parser[1] == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!(BOTH_SET(ctx->Parser[0], ctx->Parser[1]))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (!(BOTH_SET(ctx->StateFree, ctx->StateAlloc))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (!(THREE_SET_OR_THREE_UNSET(ctx->StateGetTx, ctx->StateGetTxCnt, ctx->StateTransactionFree))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/* special case: StateGetProgressCompletionStatus is used from 'default'. */
|
|
|
|
if (!(BOTH_SET(ctx->StateGetProgress, ctx_def->StateGetProgressCompletionStatus))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/* local storage is optional, but needs both set if used */
|
|
|
|
if (!(BOTH_SET_OR_BOTH_UNSET(ctx->LocalStorageAlloc, ctx->LocalStorageFree))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (!(BOTH_SET_OR_BOTH_UNSET(ctx->StateGetTxLogged, ctx->StateSetTxLogged))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (!(BOTH_SET_OR_BOTH_UNSET(ctx->SetTxMpmIDs, ctx->GetTxMpmIDs))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (!(BOTH_SET(ctx->GetTxDetectState, ctx->SetTxDetectState))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/* TODO: not yet mandatory to use StateHasTxDetectState
|
|
|
|
if (!(THREE_SET_OR_THREE_UNSET(ctx->GetTxDetectState, ctx->SetTxDetectState, ctx->StateHasTxDetectState))) {
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
return;
|
|
|
|
bad:
|
|
|
|
ValidateParserProtoDump(alproto, ipproto);
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
#undef BOTH_SET
|
|
|
|
#undef BOTH_SET_OR_BOTH_UNSET
|
|
|
|
#undef THREE_SET_OR_THREE_UNSET
|
|
|
|
|
|
|
|
static void ValidateParser(AppProto alproto)
|
|
|
|
{
|
|
|
|
ValidateParserProto(alproto, IPPROTO_TCP);
|
|
|
|
ValidateParserProto(alproto, IPPROTO_UDP);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ValidateParsers(void)
|
|
|
|
{
|
|
|
|
AppProto p = 0;
|
|
|
|
for ( ; p < ALPROTO_MAX; p++) {
|
|
|
|
ValidateParser(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void AppLayerParserRegisterProtocolParsers(void)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
RegisterHTPParsers();
|
|
|
|
RegisterSSLParsers();
|
|
|
|
RegisterSMBParsers();
|
|
|
|
/** \todo bug 719 */
|
|
|
|
//RegisterSMB2Parsers();
|
|
|
|
RegisterDCERPCParsers();
|
|
|
|
RegisterDCERPCUDPParsers();
|
|
|
|
RegisterFTPParsers();
|
|
|
|
RegisterSSHParsers();
|
|
|
|
RegisterSMTPParsers();
|
|
|
|
RegisterDNSUDPParsers();
|
|
|
|
RegisterDNSTCPParsers();
|
|
|
|
RegisterModbusParsers();
|
|
|
|
RegisterENIPUDPParsers();
|
|
|
|
RegisterENIPTCPParsers();
|
|
|
|
RegisterDNP3Parsers();
|
|
|
|
RegisterNFSTCPParsers();
|
|
|
|
RegisterNFSUDPParsers();
|
|
|
|
RegisterNTPParsers();
|
|
|
|
RegisterTemplateParsers();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/** IMAP */
|
|
|
|
AppLayerProtoDetectRegisterProtocol(ALPROTO_IMAP, "imap");
|
|
|
|
if (AppLayerProtoDetectConfProtoDetectionEnabled("tcp", "imap")) {
|
|
|
|
if (AppLayerProtoDetectPMRegisterPatternCS(IPPROTO_TCP, ALPROTO_IMAP,
|
|
|
|
"1|20|capability", 12, 0, STREAM_TOSERVER) < 0)
|
|
|
|
{
|
|
|
|
SCLogInfo("imap proto registration failure\n");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
} else {
|
|
|
|
SCLogInfo("Protocol detection and parser disabled for %s protocol.",
|
|
|
|
"imap");
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
/** MSN Messenger */
|
|
|
|
AppLayerProtoDetectRegisterProtocol(ALPROTO_MSN, "msn");
|
|
|
|
if (AppLayerProtoDetectConfProtoDetectionEnabled("tcp", "msn")) {
|
|
|
|
if (AppLayerProtoDetectPMRegisterPatternCS(IPPROTO_TCP, ALPROTO_MSN,
|
|
|
|
"msn", 10, 6, STREAM_TOSERVER) < 0)
|
|
|
|
{
|
|
|
|
SCLogInfo("msn proto registration failure\n");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
} else {
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCLogInfo("Protocol detection and parser disabled for %s protocol.",
|
|
|
|
"msn");
|
|
|
|
}
|
|
|
|
|
|
|
|
ValidateParsers();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AppLayerParserStateSetFlag(AppLayerParserState *pstate, uint8_t flag)
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
pstate->flags |= flag;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserStateIssetFlag(AppLayerParserState *pstate, uint8_t flag)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
SCReturnInt(pstate->flags & flag);
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
void AppLayerParserStreamTruncated(uint8_t ipproto, AppProto alproto, void *alstate,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
uint8_t direction)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
if (alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].Truncate != NULL)
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].Truncate(alstate, direction);
|
|
|
|
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
#ifdef DEBUG
|
|
|
|
void AppLayerParserStatePrintDetails(AppLayerParserState *pstate)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
if (pstate == NULL)
|
|
|
|
SCReturn;
|
|
|
|
|
|
|
|
AppLayerParserState *p = pstate;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCLogDebug("AppLayerParser parser state information for parser state p(%p). "
|
|
|
|
"p->inspect_id[0](%"PRIu64"), "
|
|
|
|
"p->inspect_id[1](%"PRIu64"), "
|
|
|
|
"p->log_id(%"PRIu64"), "
|
|
|
|
"p->decoder_events(%p).",
|
|
|
|
pstate, p->inspect_id[0], p->inspect_id[1], p->log_id,
|
|
|
|
p->decoder_events);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_APPLAYER
|
|
|
|
int AppLayerParserRequestFromFile(uint8_t ipproto, AppProto alproto, char *filename)
|
|
|
|
{
|
|
|
|
bool do_dump = (getenv("SC_AFL_DUMP_FILES") != NULL);
|
|
|
|
struct timeval ts;
|
|
|
|
memset(&ts, 0, sizeof(ts));
|
|
|
|
gettimeofday(&ts, NULL);
|
|
|
|
|
|
|
|
int result = 1;
|
|
|
|
Flow *f = NULL;
|
|
|
|
TcpSession ssn;
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
memset(&ssn, 0, sizeof(ssn));
|
|
|
|
|
|
|
|
f = SCCalloc(1, sizeof(Flow));
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
FLOW_INITIALIZE(f);
|
|
|
|
|
|
|
|
f->flags |= FLOW_IPV4;
|
|
|
|
f->src.addr_data32[0] = 0x01020304;
|
|
|
|
f->dst.addr_data32[0] = 0x05060708;
|
|
|
|
f->sp = 10000;
|
|
|
|
f->dp = 80;
|
|
|
|
f->protoctx = &ssn;
|
|
|
|
f->proto = ipproto;
|
|
|
|
f->protomap = FlowGetProtoMapping(f->proto);
|
|
|
|
f->alproto = alproto;
|
|
|
|
|
|
|
|
uint8_t buffer[65536];
|
|
|
|
uint32_t cnt = 0;
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_PERSISTANT_MODE
|
|
|
|
while (__AFL_LOOP(1000)) {
|
|
|
|
/* reset state */
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
|
|
#endif /* AFLFUZZ_PERSISTANT_MODE */
|
|
|
|
|
|
|
|
FILE *fp = fopen(filename, "r");
|
|
|
|
BUG_ON(fp == NULL);
|
|
|
|
|
|
|
|
int start = 1;
|
|
|
|
while (1) {
|
|
|
|
int done = 0;
|
|
|
|
size_t size = fread(&buffer, 1, sizeof(buffer), fp);
|
|
|
|
if (size < sizeof(buffer))
|
|
|
|
done = 1;
|
|
|
|
|
|
|
|
if (do_dump) {
|
|
|
|
char outfilename[256];
|
|
|
|
snprintf(outfilename, sizeof(outfilename), "dump/%u-%u.%u",
|
|
|
|
(unsigned int)ts.tv_sec, (unsigned int)ts.tv_usec, cnt);
|
|
|
|
FILE *out_fp = fopen(outfilename, "w");
|
|
|
|
BUG_ON(out_fp == NULL);
|
|
|
|
(void)fwrite(buffer, size, 1, out_fp);
|
|
|
|
fclose(out_fp);
|
|
|
|
}
|
|
|
|
//SCLogInfo("result %u done %d start %d", (uint)result, done, start);
|
|
|
|
|
|
|
|
uint8_t flags = STREAM_TOSERVER;
|
|
|
|
if (start--) {
|
|
|
|
flags |= STREAM_START;
|
|
|
|
}
|
|
|
|
if (done) {
|
|
|
|
flags |= STREAM_EOF;
|
|
|
|
}
|
|
|
|
//PrintRawDataFp(stdout, buffer, result);
|
|
|
|
|
|
|
|
(void)AppLayerParserParse(NULL, alp_tctx, f, alproto, flags,
|
|
|
|
buffer, size);
|
|
|
|
cnt++;
|
|
|
|
|
|
|
|
if (done)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_PERSISTANT_MODE
|
|
|
|
}
|
|
|
|
#endif /* AFLFUZZ_PERSISTANT_MODE */
|
|
|
|
|
|
|
|
if (do_dump) {
|
|
|
|
/* if we get here there was no crash, so we can remove our files */
|
|
|
|
uint32_t x = 0;
|
|
|
|
for (x = 0; x < cnt; x++) {
|
|
|
|
char rmfilename[256];
|
|
|
|
snprintf(rmfilename, sizeof(rmfilename), "dump/%u-%u.%u",
|
|
|
|
(unsigned int)ts.tv_sec, (unsigned int)ts.tv_usec, x);
|
|
|
|
unlink(rmfilename);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (alp_tctx != NULL)
|
|
|
|
AppLayerParserThreadCtxFree(alp_tctx);
|
|
|
|
if (f != NULL) {
|
|
|
|
FlowFree(f);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* load a serie of files generated by DecoderParseDataFromFile() in
|
|
|
|
* the same order as it was produced. */
|
|
|
|
int AppLayerParserRequestFromFileSerie(uint8_t ipproto, AppProto alproto, char *fileprefix)
|
|
|
|
{
|
|
|
|
uint32_t cnt = 0;
|
|
|
|
int start = 1;
|
|
|
|
int result = 1;
|
|
|
|
Flow *f = NULL;
|
|
|
|
TcpSession ssn;
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
memset(&ssn, 0, sizeof(ssn));
|
|
|
|
|
|
|
|
f = SCCalloc(1, sizeof(Flow));
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
FLOW_INITIALIZE(f);
|
|
|
|
|
|
|
|
f->flags |= FLOW_IPV4;
|
|
|
|
f->src.addr_data32[0] = 0x01020304;
|
|
|
|
f->dst.addr_data32[0] = 0x05060708;
|
|
|
|
f->sp = 10000;
|
|
|
|
f->dp = 80;
|
|
|
|
f->protoctx = &ssn;
|
|
|
|
f->proto = ipproto;
|
|
|
|
f->protomap = FlowGetProtoMapping(f->proto);
|
|
|
|
f->alproto = alproto;
|
|
|
|
|
|
|
|
uint8_t buffer[65536];
|
|
|
|
|
|
|
|
char filename[256];
|
|
|
|
snprintf(filename, sizeof(filename), "dump/%s.%u", fileprefix, cnt);
|
|
|
|
FILE *fp;
|
|
|
|
while ((fp = fopen(filename, "r")) != NULL)
|
|
|
|
{
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
|
|
|
|
|
|
size_t size = fread(&buffer, 1, sizeof(buffer), fp);
|
|
|
|
|
|
|
|
uint8_t flags = STREAM_TOSERVER;
|
|
|
|
if (start--) {
|
|
|
|
flags |= STREAM_START;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void)AppLayerParserParse(NULL, alp_tctx, f, alproto, flags,
|
|
|
|
buffer, size);
|
|
|
|
|
|
|
|
fclose(fp);
|
|
|
|
cnt++;
|
|
|
|
|
|
|
|
snprintf(filename, sizeof(filename), "dump/%s.%u", fileprefix, cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (alp_tctx != NULL)
|
|
|
|
AppLayerParserThreadCtxFree(alp_tctx);
|
|
|
|
if (f != NULL) {
|
|
|
|
FlowFree(f);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int AppLayerParserFromFile(uint8_t ipproto, AppProto alproto, char *filename)
|
|
|
|
{
|
|
|
|
bool do_dump = (getenv("SC_AFL_DUMP_FILES") != NULL);
|
|
|
|
struct timeval ts;
|
|
|
|
memset(&ts, 0, sizeof(ts));
|
|
|
|
gettimeofday(&ts, NULL);
|
|
|
|
|
|
|
|
int result = 1;
|
|
|
|
Flow *f = NULL;
|
|
|
|
TcpSession ssn;
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
memset(&ssn, 0, sizeof(ssn));
|
|
|
|
|
|
|
|
f = SCCalloc(1, sizeof(Flow));
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
FLOW_INITIALIZE(f);
|
|
|
|
|
|
|
|
f->flags |= FLOW_IPV4;
|
|
|
|
f->src.addr_data32[0] = 0x01020304;
|
|
|
|
f->dst.addr_data32[0] = 0x05060708;
|
|
|
|
f->sp = 10000;
|
|
|
|
f->dp = 80;
|
|
|
|
f->protoctx = &ssn;
|
|
|
|
f->proto = ipproto;
|
|
|
|
f->protomap = FlowGetProtoMapping(f->proto);
|
|
|
|
f->alproto = alproto;
|
|
|
|
|
|
|
|
uint8_t buffer[65536];
|
|
|
|
uint32_t cnt = 0;
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_PERSISTANT_MODE
|
|
|
|
while (__AFL_LOOP(1000)) {
|
|
|
|
/* reset state */
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
|
|
#endif /* AFLFUZZ_PERSISTANT_MODE */
|
|
|
|
|
|
|
|
FILE *fp = fopen(filename, "r");
|
|
|
|
BUG_ON(fp == NULL);
|
|
|
|
|
|
|
|
int start = 1;
|
|
|
|
int flip = 0;
|
|
|
|
while (1) {
|
|
|
|
int done = 0;
|
|
|
|
size_t size = fread(&buffer, 1, sizeof(buffer), fp);
|
|
|
|
if (size < sizeof(buffer))
|
|
|
|
done = 1;
|
|
|
|
if (do_dump) {
|
|
|
|
char outfilename[256];
|
|
|
|
snprintf(outfilename, sizeof(outfilename), "dump/%u-%u.%u",
|
|
|
|
(unsigned int)ts.tv_sec, (unsigned int)ts.tv_usec, cnt);
|
|
|
|
FILE *out_fp = fopen(outfilename, "w");
|
|
|
|
BUG_ON(out_fp == NULL);
|
|
|
|
(void)fwrite(buffer, size, 1, out_fp);
|
|
|
|
fclose(out_fp);
|
|
|
|
}
|
|
|
|
//SCLogInfo("result %u done %d start %d", (uint)result, done, start);
|
|
|
|
|
|
|
|
uint8_t flags = 0;
|
|
|
|
if (flip) {
|
|
|
|
flags = STREAM_TOCLIENT;
|
|
|
|
flip = 0;
|
|
|
|
} else {
|
|
|
|
flags = STREAM_TOSERVER;
|
|
|
|
flip = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (start--) {
|
|
|
|
flags |= STREAM_START;
|
|
|
|
}
|
|
|
|
if (done) {
|
|
|
|
flags |= STREAM_EOF;
|
|
|
|
}
|
|
|
|
//PrintRawDataFp(stdout, buffer, result);
|
|
|
|
|
|
|
|
(void)AppLayerParserParse(NULL, alp_tctx, f, alproto, flags,
|
|
|
|
buffer, size);
|
|
|
|
|
|
|
|
cnt++;
|
|
|
|
|
|
|
|
if (done)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
#ifdef AFLFUZZ_PERSISTANT_MODE
|
|
|
|
}
|
|
|
|
#endif /* AFLFUZZ_PERSISTANT_MODE */
|
|
|
|
|
|
|
|
if (do_dump) {
|
|
|
|
/* if we get here there was no crash, so we can remove our files */
|
|
|
|
uint32_t x = 0;
|
|
|
|
for (x = 0; x < cnt; x++) {
|
|
|
|
char rmfilename[256];
|
|
|
|
snprintf(rmfilename, sizeof(rmfilename), "dump/%u-%u.%u",
|
|
|
|
(unsigned int)ts.tv_sec, (unsigned int)ts.tv_usec, x);
|
|
|
|
unlink(rmfilename);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
end:
|
|
|
|
if (alp_tctx != NULL)
|
|
|
|
AppLayerParserThreadCtxFree(alp_tctx);
|
|
|
|
if (f != NULL) {
|
|
|
|
FlowFree(f);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* load a serie of files generated by DecoderParseDataFromFile() in
|
|
|
|
* the same order as it was produced. */
|
|
|
|
int AppLayerParserFromFileSerie(uint8_t ipproto, AppProto alproto, char *fileprefix)
|
|
|
|
{
|
|
|
|
uint32_t cnt = 0;
|
|
|
|
int start = 1;
|
|
|
|
int result = 1;
|
|
|
|
Flow *f = NULL;
|
|
|
|
TcpSession ssn;
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
memset(&ssn, 0, sizeof(ssn));
|
|
|
|
|
|
|
|
f = SCCalloc(1, sizeof(Flow));
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
FLOW_INITIALIZE(f);
|
|
|
|
|
|
|
|
f->flags |= FLOW_IPV4;
|
|
|
|
f->src.addr_data32[0] = 0x01020304;
|
|
|
|
f->dst.addr_data32[0] = 0x05060708;
|
|
|
|
f->sp = 10000;
|
|
|
|
f->dp = 80;
|
|
|
|
f->protoctx = &ssn;
|
|
|
|
f->proto = ipproto;
|
|
|
|
f->protomap = FlowGetProtoMapping(f->proto);
|
|
|
|
f->alproto = alproto;
|
|
|
|
|
|
|
|
uint8_t buffer[65536];
|
|
|
|
int flip = 0;
|
|
|
|
char filename[256];
|
|
|
|
snprintf(filename, sizeof(filename), "dump/%s.%u", fileprefix, cnt);
|
|
|
|
FILE *fp;
|
|
|
|
while ((fp = fopen(filename, "r")) != NULL)
|
|
|
|
{
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
|
|
|
|
|
|
size_t size = fread(&buffer, 1, sizeof(buffer), fp);
|
|
|
|
|
|
|
|
uint8_t flags = 0;
|
|
|
|
if (flip) {
|
|
|
|
flags = STREAM_TOCLIENT;
|
|
|
|
flip = 0;
|
|
|
|
} else {
|
|
|
|
flags = STREAM_TOSERVER;
|
|
|
|
flip = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (start--) {
|
|
|
|
flags |= STREAM_START;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void)AppLayerParserParse(NULL, alp_tctx, f, alproto, flags,
|
|
|
|
buffer, size);
|
|
|
|
|
|
|
|
fclose(fp);
|
|
|
|
cnt++;
|
|
|
|
|
|
|
|
snprintf(filename, sizeof(filename), "dump/%s.%u", fileprefix, cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (alp_tctx != NULL)
|
|
|
|
AppLayerParserThreadCtxFree(alp_tctx);
|
|
|
|
if (f != NULL) {
|
|
|
|
FlowFree(f);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* AFLFUZZ_APPLAYER */
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
/***** Unittests *****/
|
|
|
|
|
|
|
|
#ifdef UNITTESTS
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
static AppLayerParserCtx alp_ctx_backup_unittest;
|
|
|
|
|
|
|
|
typedef struct TestState_ {
|
|
|
|
uint8_t test;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
} TestState;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \brief Test parser function to test the memory deallocation of app layer
|
|
|
|
* parser of occurence of an error.
|
|
|
|
*/
|
|
|
|
static int TestProtocolParser(Flow *f, void *test_state, AppLayerParserState *pstate,
|
|
|
|
uint8_t *input, uint32_t input_len,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void *local_data)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
SCReturnInt(-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief Function to allocates the Test protocol state memory
|
|
|
|
*/
|
|
|
|
static void *TestProtocolStateAlloc(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
void *s = SCMalloc(sizeof(TestState));
|
|
|
|
if (unlikely(s == NULL))
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
goto end;
|
|
|
|
memset(s, 0, sizeof(TestState));
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
end:
|
|
|
|
SCReturnPtr(s, "TestState");
|
|
|
|
}
|
|
|
|
|
|
|
|
/** \brief Function to free the Test Protocol state memory
|
|
|
|
*/
|
|
|
|
static void TestProtocolStateFree(void *s)
|
|
|
|
{
|
|
|
|
SCFree(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppLayerParserRegisterProtocolUnittests(uint8_t ipproto, AppProto alproto,
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void (*RegisterUnittests)(void))
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
alp_ctx.ctxs[FlowGetProtoMapping(ipproto)][alproto].
|
|
|
|
RegisterUnittests = RegisterUnittests;
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void AppLayerParserBackupParserTable(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
alp_ctx_backup_unittest = alp_ctx;
|
|
|
|
memset(&alp_ctx, 0, sizeof(alp_ctx));
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void AppLayerParserRestoreParserTable(void)
|
|
|
|
{
|
|
|
|
SCEnter();
|
|
|
|
alp_ctx = alp_ctx_backup_unittest;
|
|
|
|
memset(&alp_ctx_backup_unittest, 0, sizeof(alp_ctx_backup_unittest));
|
|
|
|
SCReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \test Test the deallocation of app layer parser memory on occurance of
|
|
|
|
* error in the parsing process.
|
|
|
|
*/
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
static int AppLayerParserTest01(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerParserBackupParserTable();
|
|
|
|
|
|
|
|
int result = 0;
|
|
|
|
Flow *f = NULL;
|
|
|
|
uint8_t testbuf[] = { 0x11 };
|
|
|
|
uint32_t testlen = sizeof(testbuf);
|
|
|
|
TcpSession ssn;
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
memset(&ssn, 0, sizeof(ssn));
|
|
|
|
|
|
|
|
/* Register the Test protocol state and parser functions */
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerParserRegisterParser(IPPROTO_TCP, ALPROTO_TEST, STREAM_TOSERVER,
|
|
|
|
TestProtocolParser);
|
|
|
|
AppLayerParserRegisterStateFuncs(IPPROTO_TCP, ALPROTO_TEST,
|
|
|
|
TestProtocolStateAlloc, TestProtocolStateFree);
|
|
|
|
|
|
|
|
f = UTHBuildFlow(AF_INET, "1.2.3.4", "4.3.2.1", 20, 40);
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
f->protoctx = &ssn;
|
|
|
|
f->alproto = ALPROTO_TEST;
|
|
|
|
f->proto = IPPROTO_TCP;
|
|
|
|
|
|
|
|
StreamTcpInitConfig(TRUE);
|
|
|
|
|
|
|
|
FLOWLOCK_WRLOCK(f);
|
|
|
|
int r = AppLayerParserParse(NULL, alp_tctx, f, ALPROTO_TEST,
|
|
|
|
STREAM_TOSERVER | STREAM_EOF, testbuf,
|
|
|
|
testlen);
|
|
|
|
if (r != -1) {
|
|
|
|
printf("returned %" PRId32 ", expected -1: ", r);
|
|
|
|
FLOWLOCK_UNLOCK(f);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
FLOWLOCK_UNLOCK(f);
|
|
|
|
|
|
|
|
if (!(ssn.flags & STREAMTCP_FLAG_APP_LAYER_DISABLED)) {
|
|
|
|
printf("flag should have been set, but is not: ");
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
result = 1;
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
end:
|
|
|
|
AppLayerParserRestoreParserTable();
|
|
|
|
StreamTcpFreeConfig(TRUE);
|
|
|
|
|
|
|
|
UTHFreeFlow(f);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \test Test the deallocation of app layer parser memory on occurance of
|
|
|
|
* error in the parsing process for UDP.
|
|
|
|
*/
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
static int AppLayerParserTest02(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerParserBackupParserTable();
|
|
|
|
|
|
|
|
int result = 1;
|
|
|
|
Flow *f = NULL;
|
|
|
|
uint8_t testbuf[] = { 0x11 };
|
|
|
|
uint32_t testlen = sizeof(testbuf);
|
|
|
|
AppLayerParserThreadCtx *alp_tctx = AppLayerParserThreadCtxAlloc();
|
|
|
|
|
|
|
|
/* Register the Test protocol state and parser functions */
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
AppLayerParserRegisterParser(IPPROTO_UDP, ALPROTO_TEST, STREAM_TOSERVER,
|
|
|
|
TestProtocolParser);
|
|
|
|
AppLayerParserRegisterStateFuncs(IPPROTO_UDP, ALPROTO_TEST,
|
|
|
|
TestProtocolStateAlloc, TestProtocolStateFree);
|
|
|
|
|
|
|
|
f = UTHBuildFlow(AF_INET, "1.2.3.4", "4.3.2.1", 20, 40);
|
|
|
|
if (f == NULL)
|
|
|
|
goto end;
|
|
|
|
f->alproto = ALPROTO_TEST;
|
|
|
|
f->proto = IPPROTO_UDP;
|
|
|
|
f->protomap = FlowGetProtoMapping(f->proto);
|
|
|
|
|
|
|
|
StreamTcpInitConfig(TRUE);
|
|
|
|
|
|
|
|
FLOWLOCK_WRLOCK(f);
|
|
|
|
int r = AppLayerParserParse(NULL, alp_tctx, f, ALPROTO_TEST,
|
|
|
|
STREAM_TOSERVER | STREAM_EOF, testbuf,
|
|
|
|
testlen);
|
|
|
|
if (r != -1) {
|
|
|
|
printf("returned %" PRId32 ", expected -1: \n", r);
|
|
|
|
result = 0;
|
|
|
|
FLOWLOCK_UNLOCK(f);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
FLOWLOCK_UNLOCK(f);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
end:
|
|
|
|
AppLayerParserRestoreParserTable();
|
|
|
|
StreamTcpFreeConfig(TRUE);
|
|
|
|
UTHFreeFlow(f);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
void AppLayerParserRegisterUnittests(void)
|
|
|
|
{
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCEnter();
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
int ip;
|
|
|
|
AppProto alproto;
|
|
|
|
AppLayerParserProtoCtx *ctx;
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
for (ip = 0; ip < FLOW_PROTO_DEFAULT; ip++) {
|
|
|
|
for (alproto = 0; alproto < ALPROTO_MAX; alproto++) {
|
|
|
|
ctx = &alp_ctx.ctxs[ip][alproto];
|
|
|
|
if (ctx->RegisterUnittests == NULL)
|
|
|
|
continue;
|
|
|
|
ctx->RegisterUnittests();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
UtRegisterTest("AppLayerParserTest01", AppLayerParserTest01);
|
|
|
|
UtRegisterTest("AppLayerParserTest02", AppLayerParserTest02);
|
|
|
|
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
SCReturn;
|
|
|
|
}
|
App layer API rewritten. The main files in question are:
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
|
|
|
|
|
|
|
#endif
|