You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/tmqh-flow.c

518 lines
13 KiB
C

/* Copyright (C) 2007-2010 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
* \author Anoop Saldanha <anoopsaldanha@gmail.com>
*
* Simple output queue handler that makes sure all packets of the same flow
* are sent to the same queue. We support different kind of q handlers. Have
* a look at "autofp-scheduler" conf to further undertsand the various q
* handlers we provide.
*/
#include "suricata.h"
#include "packet-queue.h"
#include "decode.h"
#include "threads.h"
#include "threadvars.h"
#include "tmqh-flow.h"
#include "tm-queuehandlers.h"
#include "conf.h"
#include "util-unittest.h"
Packet *TmqhInputFlow(ThreadVars *t);
void TmqhOutputFlowActiveFlows(ThreadVars *t, Packet *p);
void TmqhOutputFlowActivePackets(ThreadVars *t, Packet *p);
void TmqhOutputFlowRoundRobin(ThreadVars *t, Packet *p);
void *TmqhOutputFlowSetupCtx(char *queue_str);
void TmqhOutputFlowFreeCtx(void *ctx);
void TmqhFlowRegisterTests(void);
TmqhFlowCtx *tmqh_flow_outctx = NULL;
void TmqhFlowRegister(void)
{
tmqh_table[TMQH_FLOW].name = "flow";
tmqh_table[TMQH_FLOW].InHandler = TmqhInputFlow;
tmqh_table[TMQH_FLOW].OutHandlerCtxSetup = TmqhOutputFlowSetupCtx;
tmqh_table[TMQH_FLOW].OutHandlerCtxFree = TmqhOutputFlowFreeCtx;
tmqh_table[TMQH_FLOW].RegisterTests = TmqhFlowRegisterTests;
char *scheduler = NULL;
if (ConfGet("autofp-scheduler", &scheduler) == 1) {
if (strcmp(scheduler, "round_robin") == 0) {
SCLogInfo("AutoFP mode using \"Round Robin\" Q Handler");
tmqh_table[TMQH_FLOW].OutHandler = TmqhOutputFlowRoundRobin;
} else if (strcmp(scheduler, "active_flows") == 0) {
SCLogInfo("AutoFP mode using \"Active Flows\" Q Handler");
tmqh_table[TMQH_FLOW].OutHandler = TmqhOutputFlowActiveFlows;
} else if (strcmp(scheduler, "active_packets") == 0) {
SCLogInfo("AutoFP mode using \"Active Packets\" Q Handler");
tmqh_table[TMQH_FLOW].OutHandler = TmqhOutputFlowActivePackets;
} else {
SCLogError(SC_ERR_INVALID_YAML_CONF_ENTRY, "Invalid entry \"%s\" "
"for autofp-scheduler in conf. Killing engine.",
scheduler);
exit(EXIT_FAILURE);
}
} else {
SCLogInfo("AutoFP mode using default \"Round Robin\" Q Handler");
tmqh_table[TMQH_FLOW].OutHandler = TmqhOutputFlowRoundRobin;
}
return;
}
/* same as 'simple' */
Packet *TmqhInputFlow(ThreadVars *tv)
{
PacketQueue *q = &trans_q[tv->inq->id];
SCMutexLock(&q->mutex_q);
if (q->len == 0) {
/* if we have no packets in queue, wait... */
SCCondWait(&q->cond_q, &q->mutex_q);
}
SCPerfSyncCountersIfSignalled(tv, 0);
if (q->len > 0) {
Packet *p = PacketDequeue(q);
SCMutexUnlock(&q->mutex_q);
return p;
} else {
/* return NULL if we have no pkt. Should only happen on signals. */
SCMutexUnlock(&q->mutex_q);
return NULL;
}
}
static int StoreQueueId(TmqhFlowCtx *ctx, char *name)
{
Tmq *tmq = TmqGetQueueByName(name);
if (tmq == NULL) {
tmq = TmqCreateQueue(SCStrdup(name));
if (tmq == NULL)
return -1;
}
tmq->writer_cnt++;
uint16_t id = tmq->id;
if (ctx->queues == NULL) {
ctx->size = 1;
ctx->queues = SCMalloc(ctx->size * sizeof(TmqhFlowMode));
memset(ctx->queues, 0, ctx->size * sizeof(TmqhFlowMode));
if (ctx->queues == NULL) {
return -1;
}
} else {
ctx->size++;
ctx->queues = SCRealloc(ctx->queues, ctx->size * sizeof(TmqhFlowMode));
if (ctx->queues == NULL) {
return -1;
}
memset(ctx->queues + (ctx->size - 1), 0, sizeof(TmqhFlowMode));
}
ctx->queues[ctx->size - 1].q = &trans_q[id];
SC_ATOMIC_INIT(ctx->queues[ctx->size - 1].active_flows);
return 0;
}
/**
* \brief setup the queue handlers ctx
*
* Parses a comma separated string "queuename1,queuename2,etc"
* and sets the ctx up to devide flows over these queue's.
*
* \param queue_str comma separated string with output queue names
*
* \retval ctx queues handlers ctx or NULL in error
*/
void *TmqhOutputFlowSetupCtx(char *queue_str)
{
if (queue_str == NULL || strlen(queue_str) == 0)
return NULL;
TmqhFlowCtx *ctx = SCMalloc(sizeof(TmqhFlowCtx));
if (ctx == NULL)
return NULL;
memset(ctx,0x00,sizeof(TmqhFlowCtx));
char *str = SCStrdup(queue_str);
if (str == NULL) {
goto error;
}
char *tstr = str;
/* parse the comma separated string */
do {
char *comma = strchr(tstr,',');
if (comma != NULL) {
*comma = '\0';
char *qname = tstr;
int r = StoreQueueId(ctx,qname);
if (r < 0)
goto error;
} else {
char *qname = tstr;
int r = StoreQueueId(ctx,qname);
if (r < 0)
goto error;
}
tstr = comma ? (comma + 1) : comma;
} while (tstr != NULL);
tmqh_flow_outctx = ctx;
SCFree(str);
return (void *)ctx;
error:
SCFree(ctx);
if (str != NULL)
SCFree(str);
return NULL;
}
void TmqhOutputFlowFreeCtx(void *ctx)
{
int i;
TmqhFlowCtx *fctx = (TmqhFlowCtx *)ctx;
for (i = 0; i < fctx->size; i++) {
SC_ATOMIC_DESTROY(fctx->queues[i].active_flows);
}
SCFree(fctx->queues);
tmqh_flow_outctx = NULL;
return;
}
/**
* \brief select the queue to output in a round robin fashion.
*
* \param tv thread vars
* \param p packet
*/
void TmqhOutputFlowRoundRobin(ThreadVars *tv, Packet *p)
{
int32_t qid = 0;
TmqhFlowCtx *ctx = (TmqhFlowCtx *)tv->outctx;
/* if no flow we use the first queue,
* should be rare */
if (p->flow != NULL) {
qid = p->flow->autofp_tmqh_flow_qid;
if (qid == -1) {
p->flow->autofp_tmqh_flow_qid = qid = ctx->round_robin_idx++;
ctx->round_robin_idx = ctx->round_robin_idx % ctx->size;
SC_ATOMIC_ADD(ctx->queues[qid].active_flows, 1);
ctx->queues[qid].total_flows++;
}
ctx->queues[qid].total_packets++;
} else {
qid = ctx->last++;
if (ctx->last == ctx->size)
ctx->last = 0;
}
PacketQueue *q = ctx->queues[qid].q;
SCMutexLock(&q->mutex_q);
PacketEnqueue(q, p);
SCCondSignal(&q->cond_q);
SCMutexUnlock(&q->mutex_q);
return;
}
/**
* \brief select the queue to output to based on queue lengths.
*
* \param tv thread vars
* \param p packet
*/
void TmqhOutputFlowActivePackets(ThreadVars *tv, Packet *p)
{
int32_t qid = 0;
TmqhFlowCtx *ctx = (TmqhFlowCtx *)tv->outctx;
/* if no flow we use the first queue,
* should be rare */
if (p->flow != NULL) {
qid = p->flow->autofp_tmqh_flow_qid;
if (qid == -1) {
uint16_t i = 0;
int lowest_id = 0;
TmqhFlowMode *queues = ctx->queues;
uint32_t lowest = queues[i].q->len;
for (i = 1; i < ctx->size; i++) {
if (queues[i].q->len < lowest) {
lowest = queues[i].q->len;
lowest_id = i;
}
}
p->flow->autofp_tmqh_flow_qid = qid = lowest_id;
SC_ATOMIC_ADD(ctx->queues[qid].active_flows, 1);
queues[qid].total_flows++;
}
ctx->queues[qid].total_packets++;
} else {
qid = ctx->last++;
if (ctx->last == ctx->size)
ctx->last = 0;
}
PacketQueue *q = ctx->queues[qid].q;
SCMutexLock(&q->mutex_q);
PacketEnqueue(q, p);
SCCondSignal(&q->cond_q);
SCMutexUnlock(&q->mutex_q);
return;
}
/**
* \brief select the queue to output to based on active flows.
*
* \param tv thread vars
* \param p packet
*/
void TmqhOutputFlowActiveFlows(ThreadVars *tv, Packet *p)
{
int32_t qid = 0;
TmqhFlowCtx *ctx = (TmqhFlowCtx *)tv->outctx;
/* if no flow we use the first queue,
* should be rare */
if (p->flow != NULL) {
qid = p->flow->autofp_tmqh_flow_qid;
if (qid == -1) {
uint32_t i = 0;
int lowest_id = 0;
uint32_t lowest = ctx->queues[i].active_flows_sc_atomic__;
for (i = 1; i < ctx->size; i++) {
if (ctx->queues[i].active_flows_sc_atomic__ < lowest) {
lowest = ctx->queues[i].active_flows_sc_atomic__;
lowest_id = i;
}
}
p->flow->autofp_tmqh_flow_qid = qid = lowest_id;
SC_ATOMIC_ADD(ctx->queues[qid].active_flows, 1);
ctx->queues[qid].total_flows++;
}
ctx->queues[qid].total_packets++;
} else {
qid = ctx->last++;
if (ctx->last == ctx->size)
ctx->last = 0;
}
PacketQueue *q = ctx->queues[qid].q;
SCMutexLock(&q->mutex_q);
PacketEnqueue(q, p);
SCCondSignal(&q->cond_q);
SCMutexUnlock(&q->mutex_q);
return;
}
/**
* \brief Prints flow q handler statistics.
*
* Requires engine to be dead when this function's called.
*/
void TmqhFlowPrintStatistics(void)
{
uint32_t i;
SCLogInfo("AutoFP - Total flow handler queues - %" PRIu16,
tmqh_flow_outctx->size);
for (i = 0; i < tmqh_flow_outctx->size; i++) {
SCLogInfo("AutoFP - Total Packets - Queue %"PRIu32 " - %"PRIu64 , i,
tmqh_flow_outctx->queues[i].total_packets);
}
for (i = 0; i < tmqh_flow_outctx->size; i++) {
SCLogInfo("AutoFP - Total Flows - Queue %"PRIu32 " - %"PRIu64 , i,
tmqh_flow_outctx->queues[i].total_flows);
}
return;
}
#ifdef UNITTESTS
static int TmqhOutputFlowSetupCtxTest01(void)
{
int retval = 0;
Tmq *tmq = NULL;
TmqResetQueues();
tmq = TmqCreateQueue("queue1");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("queue2");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("another");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("yetanother");
if (tmq == NULL)
goto end;
char *str = "queue1,queue2,another,yetanother";
void *ctx = TmqhOutputFlowSetupCtx(str);
if (ctx == NULL)
goto end;
TmqhFlowCtx *fctx = (TmqhFlowCtx *)ctx;
if (fctx->size != 4)
goto end;
if (fctx->queues == NULL)
goto end;
if (fctx->queues[0].q != &trans_q[0])
goto end;
if (fctx->queues[1].q != &trans_q[1])
goto end;
if (fctx->queues[2].q != &trans_q[2])
goto end;
if (fctx->queues[3].q != &trans_q[3])
goto end;
retval = 1;
end:
if (fctx != NULL)
TmqhOutputFlowFreeCtx(fctx);
TmqResetQueues();
return retval;
}
static int TmqhOutputFlowSetupCtxTest02(void)
{
int retval = 0;
Tmq *tmq = NULL;
TmqResetQueues();
tmq = TmqCreateQueue("queue1");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("queue2");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("another");
if (tmq == NULL)
goto end;
tmq = TmqCreateQueue("yetanother");
if (tmq == NULL)
goto end;
char *str = "queue1";
void *ctx = TmqhOutputFlowSetupCtx(str);
if (ctx == NULL)
goto end;
TmqhFlowCtx *fctx = (TmqhFlowCtx *)ctx;
if (fctx->size != 1)
goto end;
if (fctx->queues == NULL)
goto end;
if (fctx->queues[0].q != &trans_q[0])
goto end;
retval = 1;
end:
if (fctx != NULL)
TmqhOutputFlowFreeCtx(fctx);
TmqResetQueues();
return retval;
}
static int TmqhOutputFlowSetupCtxTest03(void)
{
int retval = 0;
TmqResetQueues();
char *str = "queue1,queue2,another,yetanother";
void *ctx = TmqhOutputFlowSetupCtx(str);
if (ctx == NULL)
goto end;
TmqhFlowCtx *fctx = (TmqhFlowCtx *)ctx;
if (fctx->size != 4)
goto end;
if (fctx->queues == NULL)
goto end;
if (fctx->queues[0].q != &trans_q[0])
goto end;
if (fctx->queues[1].q != &trans_q[1])
goto end;
if (fctx->queues[2].q != &trans_q[2])
goto end;
if (fctx->queues[3].q != &trans_q[3])
goto end;
retval = 1;
end:
if (fctx != NULL)
TmqhOutputFlowFreeCtx(fctx);
TmqResetQueues();
return retval;
}
#endif /* UNITTESTS */
void TmqhFlowRegisterTests(void)
{
#ifdef UNITTESTS
UtRegisterTest("TmqhOutputFlowSetupCtxTest01", TmqhOutputFlowSetupCtxTest01, 1);
UtRegisterTest("TmqhOutputFlowSetupCtxTest02", TmqhOutputFlowSetupCtxTest02, 1);
UtRegisterTest("TmqhOutputFlowSetupCtxTest03", TmqhOutputFlowSetupCtxTest03, 1);
#endif
return;
}