You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/decode.c

566 lines
18 KiB
C

/* Copyright (C) 2007-2014 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup decode Packet decoding
*
* \brief Code in charge of protocol decoding
*
* The task of decoding packets is made in different files and
* as Suricata is supporting encapsulation there is a potential
* recursivity in the call.
*
* For each protocol a DecodePROTO function is provided. For
* example we have DecodeIPV4() for IPv4 and DecodePPP() for
* PPP.
*
* These functions have all a pkt and and a len argument which
* are respectively a pointer to the protocol data and the length
* of this protocol data.
*
* \attention The pkt parameter must point to the effective data because
* it will be used later to set per protocol pointer like Packet::tcph
*
* @{
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Decode the raw packet
*/
#include "suricata-common.h"
#include "suricata.h"
#include "conf.h"
#include "decode.h"
#include "util-debug.h"
#include "util-mem.h"
#include "app-layer-detect-proto.h"
App layer API rewritten. The main files in question are: app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch]. Things addressed in this commit: - Brings out a proper separation between protocol detection phase and the parser phase. - The dns app layer now is registered such that we don't use "dnstcp" and "dnsudp" in the rules. A user who previously wrote a rule like this - "alert dnstcp....." or "alert dnsudp....." would now have to use, alert dns (ipproto:tcp;) or alert udp (app-layer-protocol:dns;) or alert ip (ipproto:udp; app-layer-protocol:dns;) The same rules extend to other another such protocol, dcerpc. - The app layer parser api now takes in the ipproto while registering callbacks. - The app inspection/detection engine also takes an ipproto. - All app layer parser functions now take direction as STREAM_TOSERVER or STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the functions. - FlowInitialize() and FlowRecycle() now resets proto to 0. This is needed by unittests, which would try to clean the flow, and that would call the api, AppLayerParserCleanupParserState(), which would try to clean the app state, but the app layer now needs an ipproto to figure out which api to internally call to clean the state, and if the ipproto is 0, it would return without trying to clean the state. - A lot of unittests are now updated where if they are using a flow and they need to use the app layer, we would set a flow ipproto. - The "app-layer" section in the yaml conf has also been updated as well.
12 years ago
#include "app-layer.h"
Add per packet profiling. Per packet profiling uses tick based accounting. It has 2 outputs, a summary and a csv file that contains per packet stats. Stats per packet include: 1) total ticks spent 2) ticks spent per individual thread module 3) "threading overhead" which is simply calculated by subtracting (2) of (1). A number of changes were made to integrate the new code in a clean way: a number of generic enums are now placed in tm-threads-common.h so we can include them from any part of the engine. Code depends on --enable-profiling just like the rule profiling code. New yaml parameters: profiling: # packet profiling packets: # Profiling can be disabled here, but it will still have a # performance impact if compiled in. enabled: yes filename: packet_stats.log append: yes # per packet csv output csv: # Output can be disabled here, but it will still have a # performance impact if compiled in. enabled: no filename: packet_stats.csv Example output of summary stats: IP ver Proto cnt min max avg ------ ----- ------ ------ ---------- ------- IPv4 6 19436 11448 5404365 32993 IPv4 256 4 11511 49968 30575 Per Thread module stats: Thread Module IP ver Proto cnt min max avg ------------------------ ------ ----- ------ ------ ---------- ------- TMM_DECODEPCAPFILE IPv4 6 19434 1242 47889 1770 TMM_DETECT IPv4 6 19436 1107 137241 1504 TMM_ALERTFASTLOG IPv4 6 19436 90 1323 155 TMM_ALERTUNIFIED2ALERT IPv4 6 19436 108 1359 138 TMM_ALERTDEBUGLOG IPv4 6 19436 90 1134 154 TMM_LOGHTTPLOG IPv4 6 19436 414 5392089 7944 TMM_STREAMTCP IPv4 6 19434 828 1299159 19438 The proto 256 is a counter for handling of pseudo/tunnel packets. Example output of csv: pcap_cnt,ipver,ipproto,total,TMM_DECODENFQ,TMM_VERDICTNFQ,TMM_RECEIVENFQ,TMM_RECEIVEPCAP,TMM_RECEIVEPCAPFILE,TMM_DECODEPCAP,TMM_DECODEPCAPFILE,TMM_RECEIVEPFRING,TMM_DECODEPFRING,TMM_DETECT,TMM_ALERTFASTLOG,TMM_ALERTFASTLOG4,TMM_ALERTFASTLOG6,TMM_ALERTUNIFIEDLOG,TMM_ALERTUNIFIEDALERT,TMM_ALERTUNIFIED2ALERT,TMM_ALERTPRELUDE,TMM_ALERTDEBUGLOG,TMM_ALERTSYSLOG,TMM_LOGDROPLOG,TMM_ALERTSYSLOG4,TMM_ALERTSYSLOG6,TMM_RESPONDREJECT,TMM_LOGHTTPLOG,TMM_LOGHTTPLOG4,TMM_LOGHTTPLOG6,TMM_PCAPLOG,TMM_STREAMTCP,TMM_DECODEIPFW,TMM_VERDICTIPFW,TMM_RECEIVEIPFW,TMM_RECEIVEERFFILE,TMM_DECODEERFFILE,TMM_RECEIVEERFDAG,TMM_DECODEERFDAG,threading 1,4,6,172008,0,0,0,0,0,0,47889,0,0,48582,1323,0,0,0,0,1359,0,1134,0,0,0,0,0,8028,0,0,0,49356,0,0,0,0,0,0,0,14337 First line of the file contains labels. 2 example gnuplot scripts added to plot the data.
14 years ago
#include "tm-threads.h"
#include "util-error.h"
#include "util-print.h"
#include "tmqh-packetpool.h"
Add per packet profiling. Per packet profiling uses tick based accounting. It has 2 outputs, a summary and a csv file that contains per packet stats. Stats per packet include: 1) total ticks spent 2) ticks spent per individual thread module 3) "threading overhead" which is simply calculated by subtracting (2) of (1). A number of changes were made to integrate the new code in a clean way: a number of generic enums are now placed in tm-threads-common.h so we can include them from any part of the engine. Code depends on --enable-profiling just like the rule profiling code. New yaml parameters: profiling: # packet profiling packets: # Profiling can be disabled here, but it will still have a # performance impact if compiled in. enabled: yes filename: packet_stats.log append: yes # per packet csv output csv: # Output can be disabled here, but it will still have a # performance impact if compiled in. enabled: no filename: packet_stats.csv Example output of summary stats: IP ver Proto cnt min max avg ------ ----- ------ ------ ---------- ------- IPv4 6 19436 11448 5404365 32993 IPv4 256 4 11511 49968 30575 Per Thread module stats: Thread Module IP ver Proto cnt min max avg ------------------------ ------ ----- ------ ------ ---------- ------- TMM_DECODEPCAPFILE IPv4 6 19434 1242 47889 1770 TMM_DETECT IPv4 6 19436 1107 137241 1504 TMM_ALERTFASTLOG IPv4 6 19436 90 1323 155 TMM_ALERTUNIFIED2ALERT IPv4 6 19436 108 1359 138 TMM_ALERTDEBUGLOG IPv4 6 19436 90 1134 154 TMM_LOGHTTPLOG IPv4 6 19436 414 5392089 7944 TMM_STREAMTCP IPv4 6 19434 828 1299159 19438 The proto 256 is a counter for handling of pseudo/tunnel packets. Example output of csv: pcap_cnt,ipver,ipproto,total,TMM_DECODENFQ,TMM_VERDICTNFQ,TMM_RECEIVENFQ,TMM_RECEIVEPCAP,TMM_RECEIVEPCAPFILE,TMM_DECODEPCAP,TMM_DECODEPCAPFILE,TMM_RECEIVEPFRING,TMM_DECODEPFRING,TMM_DETECT,TMM_ALERTFASTLOG,TMM_ALERTFASTLOG4,TMM_ALERTFASTLOG6,TMM_ALERTUNIFIEDLOG,TMM_ALERTUNIFIEDALERT,TMM_ALERTUNIFIED2ALERT,TMM_ALERTPRELUDE,TMM_ALERTDEBUGLOG,TMM_ALERTSYSLOG,TMM_LOGDROPLOG,TMM_ALERTSYSLOG4,TMM_ALERTSYSLOG6,TMM_RESPONDREJECT,TMM_LOGHTTPLOG,TMM_LOGHTTPLOG4,TMM_LOGHTTPLOG6,TMM_PCAPLOG,TMM_STREAMTCP,TMM_DECODEIPFW,TMM_VERDICTIPFW,TMM_RECEIVEIPFW,TMM_RECEIVEERFFILE,TMM_DECODEERFFILE,TMM_RECEIVEERFDAG,TMM_DECODEERFDAG,threading 1,4,6,172008,0,0,0,0,0,0,47889,0,0,48582,1323,0,0,0,0,1359,0,1134,0,0,0,0,0,8028,0,0,0,49356,0,0,0,0,0,0,0,14337 First line of the file contains labels. 2 example gnuplot scripts added to plot the data.
14 years ago
#include "util-profiling.h"
#include "pkt-var.h"
#include "util-mpm-ac.h"
#include "output.h"
#include "output-flow.h"
int DecodeTunnel(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p,
uint8_t *pkt, uint16_t len, PacketQueue *pq, uint8_t proto)
{
switch (proto) {
16 years ago
case PPP_OVER_GRE:
return DecodePPP(tv, dtv, p, pkt, len, pq);
case IPPROTO_IP:
return DecodeIPV4(tv, dtv, p, pkt, len, pq);
case IPPROTO_IPV6:
return DecodeIPV6(tv, dtv, p, pkt, len, pq);
16 years ago
case VLAN_OVER_GRE:
return DecodeVLAN(tv, dtv, p, pkt, len, pq);
default:
SCLogInfo("FIXME: DecodeTunnel: protocol %" PRIu32 " not supported.", proto);
break;
}
return TM_ECODE_OK;
}
/**
* \brief Return a malloced packet.
*/
void PacketFree(Packet *p)
{
PACKET_DESTRUCTOR(p);
SCFree(p);
}
/**
* \brief Finalize decoding of a packet
*
* This function needs to be call at the end of decode
* functions when decoding has been succesful.
*
*/
void PacketDecodeFinalize(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p)
{
if (p->flags & PKT_IS_INVALID)
SCPerfCounterIncr(tv, dtv->counter_invalid);
#ifdef __SC_CUDA_SUPPORT__
if (dtv->cuda_vars.mpm_is_cuda)
CudaBufferPacket(&dtv->cuda_vars, p);
#endif
}
/**
* \brief Get a malloced packet.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromAlloc(void)
{
Packet *p = SCMalloc(SIZE_OF_PACKET);
if (unlikely(p == NULL)) {
return NULL;
}
memset(p, 0, SIZE_OF_PACKET);
PACKET_INITIALIZE(p);
p->ReleasePacket = PacketFree;
p->flags |= PKT_ALLOC;
SCLogDebug("allocated a new packet only using alloc...");
PACKET_PROFILING_START(p);
return p;
}
/**
* \brief Return a packet to where it was allocated.
*/
void PacketFreeOrRelease(Packet *p)
{
if (p->flags & PKT_ALLOC)
PacketFree(p);
else
PacketPoolReturnPacket(p);
}
/**
* \brief Get a packet. We try to get a packet from the packetpool first, but
* if that is empty we alloc a packet that is free'd again after
* processing.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromQueueOrAlloc(void)
{
/* try the pool first */
Packet *p = PacketPoolGetPacket();
if (p == NULL) {
/* non fatal, we're just not processing a packet then */
p = PacketGetFromAlloc();
} else {
PACKET_PROFILING_START(p);
}
return p;
}
inline int PacketCallocExtPkt(Packet *p, int datalen)
{
if (! p->ext_pkt) {
p->ext_pkt = SCCalloc(1, datalen);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
}
return 0;
}
/**
* \brief Copy data to Packet payload at given offset
*
* This function copies data/payload to a Packet. It uses the
* space allocated at Packet creation (pointed by Packet::pkt)
* or allocate some memory (pointed by Packet::ext_pkt) if the
* data size is to big to fit in initial space (of size
* default_packet_size).
*
* \param Pointer to the Packet to modify
* \param Offset of the copy relatively to payload of Packet
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyDataOffset(Packet *p, int offset, uint8_t *data, int datalen)
{
if (unlikely(offset + datalen > MAX_PAYLOAD_SIZE)) {
/* too big */
return -1;
}
/* Do we have already an packet with allocated data */
if (! p->ext_pkt) {
if (offset + datalen <= (int)default_packet_size) {
/* data will fit in memory allocated with packet */
memcpy(GET_PKT_DIRECT_DATA(p) + offset, data, datalen);
} else {
/* here we need a dynamic allocation */
p->ext_pkt = SCMalloc(MAX_PAYLOAD_SIZE);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
/* copy initial data */
memcpy(p->ext_pkt, GET_PKT_DIRECT_DATA(p), GET_PKT_DIRECT_MAX_SIZE(p));
/* copy data as asked */
memcpy(p->ext_pkt + offset, data, datalen);
}
} else {
memcpy(p->ext_pkt + offset, data, datalen);
}
return 0;
}
/**
* \brief Copy data to Packet payload and set packet length
*
* \param Pointer to the Packet to modify
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyData(Packet *p, uint8_t *pktdata, int pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
return PacketCopyDataOffset(p, 0, pktdata, pktlen);
}
/**
* \brief Setup a pseudo packet (tunnel)
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketTunnelPktSetup(ThreadVars *tv, DecodeThreadVars *dtv, Packet *parent,
uint8_t *pkt, uint16_t len, uint8_t proto, PacketQueue *pq)
{
int ret;
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* copy packet and set lenght, proto */
PacketCopyData(p, pkt, len);
p->recursion_level = parent->recursion_level + 1;
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
ret = DecodeTunnel(tv, dtv, p, GET_PKT_DATA(p),
GET_PKT_LEN(p), pq, proto);
if (unlikely(ret != TM_ECODE_OK)) {
/* Not a tunnel packet, just a pseudo packet */
p->root = NULL;
UNSET_TUNNEL_PKT(p);
TmqhOutputPacketpool(tv, p);
SCReturnPtr(NULL, "Packet");
}
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(p);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
SCReturnPtr(p, "Packet");
}
/**
* \brief Setup a pseudo packet (reassembled frags)
*
* Difference with PacketPseudoPktSetup is that this func doesn't increment
* the recursion level. It needs to be on the same level as the frags because
* we run the flow engine against this and we need to get the same flow.
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketDefragPktSetup(Packet *parent, uint8_t *pkt, uint16_t len, uint8_t proto)
{
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* copy packet and set lenght, proto */
PacketCopyData(p, pkt, len);
p->recursion_level = parent->recursion_level; /* NOT incremented */
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
p->vlan_id[0] = parent->vlan_id[0];
p->vlan_id[1] = parent->vlan_id[1];
p->vlan_idx = parent->vlan_idx;
SCReturnPtr(p, "Packet");
}
/**
* \brief inform defrag "parent" that a pseudo packet is
* now assosiated to it.
*/
void PacketDefragPktSetupParent(Packet *parent)
{
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(parent);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
}
void DecodeRegisterPerfCounters(DecodeThreadVars *dtv, ThreadVars *tv)
{
/* register counters */
dtv->counter_pkts = SCPerfTVRegisterCounter("decoder.pkts", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_bytes = SCPerfTVRegisterCounter("decoder.bytes", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_invalid = SCPerfTVRegisterCounter("decoder.invalid", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_ipv4 = SCPerfTVRegisterCounter("decoder.ipv4", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_ipv6 = SCPerfTVRegisterCounter("decoder.ipv6", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_eth = SCPerfTVRegisterCounter("decoder.ethernet", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_raw = SCPerfTVRegisterCounter("decoder.raw", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_null = SCPerfTVRegisterCounter("decoder.null", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_sll = SCPerfTVRegisterCounter("decoder.sll", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_tcp = SCPerfTVRegisterCounter("decoder.tcp", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_udp = SCPerfTVRegisterCounter("decoder.udp", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_sctp = SCPerfTVRegisterCounter("decoder.sctp", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_icmpv4 = SCPerfTVRegisterCounter("decoder.icmpv4", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_icmpv6 = SCPerfTVRegisterCounter("decoder.icmpv6", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_ppp = SCPerfTVRegisterCounter("decoder.ppp", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_pppoe = SCPerfTVRegisterCounter("decoder.pppoe", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_gre = SCPerfTVRegisterCounter("decoder.gre", tv,
SC_PERF_TYPE_UINT64);
16 years ago
dtv->counter_vlan = SCPerfTVRegisterCounter("decoder.vlan", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_vlan_qinq = SCPerfTVRegisterCounter("decoder.vlan_qinq", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_teredo = SCPerfTVRegisterCounter("decoder.teredo", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_ipv4inipv6 = SCPerfTVRegisterCounter("decoder.ipv4_in_ipv6", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_ipv6inipv6 = SCPerfTVRegisterCounter("decoder.ipv6_in_ipv6", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_mpls = SCPerfTVRegisterCounter("decoder.mpls", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_avg_pkt_size = SCPerfTVRegisterAvgCounter("decoder.avg_pkt_size", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_max_pkt_size = SCPerfTVRegisterMaxCounter("decoder.max_pkt_size", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv4_fragments =
SCPerfTVRegisterCounter("defrag.ipv4.fragments", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv4_reassembled =
SCPerfTVRegisterCounter("defrag.ipv4.reassembled", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv4_timeouts =
SCPerfTVRegisterCounter("defrag.ipv4.timeouts", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv6_fragments =
SCPerfTVRegisterCounter("defrag.ipv6.fragments", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv6_reassembled =
SCPerfTVRegisterCounter("defrag.ipv6.reassembled", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_ipv6_timeouts =
SCPerfTVRegisterCounter("defrag.ipv6.timeouts", tv,
SC_PERF_TYPE_UINT64);
dtv->counter_defrag_max_hit =
SCPerfTVRegisterCounter("defrag.max_frag_hits", tv,
SC_PERF_TYPE_UINT64);
return;
}
/**
* \brief Debug print function for printing addresses
*
* \param Address object
*
* \todo IPv6
*/
void AddressDebugPrint(Address *a)
{
if (a == NULL)
return;
switch (a->family) {
case AF_INET:
{
char s[16];
PrintInet(AF_INET, (const void *)&a->addr_data32[0], s, sizeof(s));
SCLogDebug("%s", s);
break;
}
}
}
/** \brief Alloc and setup DecodeThreadVars */
DecodeThreadVars *DecodeThreadVarsAlloc(ThreadVars *tv)
{
DecodeThreadVars *dtv = NULL;
if ( (dtv = SCMalloc(sizeof(DecodeThreadVars))) == NULL)
return NULL;
memset(dtv, 0, sizeof(DecodeThreadVars));
dtv->app_tctx = AppLayerGetCtxThread(tv);
if (OutputFlowLogThreadInit(tv, NULL, &dtv->output_flow_thread_data) != TM_ECODE_OK) {
SCLogError(SC_ERR_THREAD_INIT, "initializing flow log API for thread failed");
DecodeThreadVarsFree(tv, dtv);
return NULL;
}
/** set config defaults */
int vlanbool = 0;
if ((ConfGetBool("vlan.use-for-tracking", &vlanbool)) == 1 && vlanbool == 0) {
dtv->vlan_disabled = 1;
}
SCLogDebug("vlan tracking is %s", dtv->vlan_disabled == 0 ? "enabled" : "disabled");
return dtv;
}
void DecodeThreadVarsFree(ThreadVars *tv, DecodeThreadVars *dtv)
{
if (dtv != NULL) {
if (dtv->app_tctx != NULL)
AppLayerDestroyCtxThread(dtv->app_tctx);
if (dtv->output_flow_thread_data != NULL)
OutputFlowLogThreadDeinit(tv, dtv->output_flow_thread_data);
SCFree(dtv);
}
}
/**
* \brief Set data for Packet and set length when zeo copy is used
*
* \param Pointer to the Packet to modify
* \param Pointer to the data
* \param Length of the data
*/
inline int PacketSetData(Packet *p, uint8_t *pktdata, int pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
if (unlikely(!pktdata)) {
return -1;
}
p->ext_pkt = pktdata;
p->flags |= PKT_ZERO_COPY;
return 0;
}
const char *PktSrcToString(enum PktSrcEnum pkt_src)
{
char *pkt_src_str = "<unknown>";
switch (pkt_src) {
case PKT_SRC_WIRE:
pkt_src_str = "wire/pcap";
break;
case PKT_SRC_DECODER_GRE:
pkt_src_str = "gre tunnel";
break;
case PKT_SRC_DECODER_IPV4:
pkt_src_str = "ipv4 tunnel";
break;
case PKT_SRC_DECODER_IPV6:
pkt_src_str = "ipv6 tunnel";
break;
case PKT_SRC_DECODER_TEREDO:
pkt_src_str = "teredo tunnel";
break;
case PKT_SRC_DEFRAG:
pkt_src_str = "defrag";
break;
case PKT_SRC_STREAM_TCP_STREAM_END_PSEUDO:
pkt_src_str = "stream";
break;
case PKT_SRC_FFR:
pkt_src_str = "stream (flow timeout)";
break;
}
return pkt_src_str;
}
/**
* @}
*/