You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
647 lines
20 KiB
Dart
647 lines
20 KiB
Dart
import 'dart:developer';
|
|
|
|
import 'package:flutter/foundation.dart';
|
|
|
|
import 'package:collection/collection.dart';
|
|
import 'package:matrix/matrix.dart';
|
|
|
|
import 'package:fluffychat/pangea/analytics/enums/construct_type_enum.dart';
|
|
import 'package:fluffychat/pangea/analytics/enums/construct_use_type_enum.dart';
|
|
import 'package:fluffychat/pangea/analytics/extensions/client_analytics_extension.dart';
|
|
import 'package:fluffychat/pangea/analytics/models/construct_use_model.dart';
|
|
import 'package:fluffychat/pangea/analytics/models/constructs_model.dart';
|
|
import 'package:fluffychat/pangea/analytics/repo/lemma_info_repo.dart';
|
|
import 'package:fluffychat/pangea/analytics/repo/lemma_info_request.dart';
|
|
import 'package:fluffychat/pangea/common/utils/error_handler.dart';
|
|
import 'package:fluffychat/pangea/events/constants/pangea_event_types.dart';
|
|
import 'package:fluffychat/pangea/events/models/pangea_token_text_model.dart';
|
|
import 'package:fluffychat/pangea/learning_settings/constants/language_constants.dart';
|
|
import 'package:fluffychat/pangea/toolbar/enums/activity_type_enum.dart';
|
|
import 'package:fluffychat/pangea/toolbar/models/practice_activity_model.dart';
|
|
import 'package:fluffychat/pangea/toolbar/repo/lemma_activity_generator.dart';
|
|
import 'package:fluffychat/pangea/toolbar/repo/lemma_meaning_activity_generator.dart';
|
|
import 'package:fluffychat/widgets/matrix.dart';
|
|
import '../../analytics/models/lemma.dart';
|
|
import '../../common/constants/model_keys.dart';
|
|
|
|
class PangeaToken {
|
|
PangeaTokenText text;
|
|
|
|
//TODO - make this a string and move save_vocab to this class
|
|
// clients have been able to handle null lemmas for 12 months so this is safe
|
|
Lemma lemma;
|
|
|
|
/// [pos] ex "VERB" - part of speech of the token
|
|
/// https://universaldependencies.org/u/pos/
|
|
final String pos;
|
|
|
|
/// [_morph] ex {} - morphological features of the token
|
|
/// https://universaldependencies.org/u/feat/
|
|
final Map<String, dynamic> _morph;
|
|
|
|
PangeaToken({
|
|
required this.text,
|
|
required this.lemma,
|
|
required this.pos,
|
|
required Map<String, dynamic> morph,
|
|
}) : _morph = morph;
|
|
|
|
@override
|
|
bool operator ==(Object other) {
|
|
if (other is PangeaToken) {
|
|
return other.text.content == text.content &&
|
|
other.text.offset == text.offset;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@override
|
|
int get hashCode => text.content.hashCode ^ text.offset.hashCode;
|
|
|
|
Map<String, dynamic> get morph {
|
|
if (_morph.keys.map((key) => key.toLowerCase()).contains("pos")) {
|
|
return _morph;
|
|
}
|
|
final morphWithPos = Map<String, dynamic>.from(_morph);
|
|
morphWithPos["pos"] = pos;
|
|
return morphWithPos;
|
|
}
|
|
|
|
/// reconstructs the text from the tokens
|
|
/// [tokens] - the tokens to reconstruct
|
|
/// [debugWalkThrough] - if true, will start the debugger
|
|
static String reconstructText(
|
|
List<PangeaToken> tokens, {
|
|
bool debugWalkThrough = false,
|
|
int startTokenIndex = 0,
|
|
int endTokenIndex = -1,
|
|
}) {
|
|
debugger(when: kDebugMode && debugWalkThrough);
|
|
|
|
if (endTokenIndex == -1) {
|
|
endTokenIndex = tokens.length;
|
|
}
|
|
|
|
final List<PangeaToken> subset =
|
|
tokens.sublist(startTokenIndex, endTokenIndex);
|
|
|
|
if (subset.isEmpty) {
|
|
debugger(when: kDebugMode);
|
|
return '';
|
|
}
|
|
|
|
if (subset.length == 1) {
|
|
return subset.first.text.content;
|
|
}
|
|
|
|
String reconstruction = "";
|
|
for (int i = 0; i < subset.length; i++) {
|
|
int whitespace = subset[i].text.offset -
|
|
(i > 0 ? (subset[i - 1].text.offset + subset[i - 1].text.length) : 0);
|
|
|
|
if (whitespace < 0) {
|
|
whitespace = 0;
|
|
}
|
|
reconstruction += ' ' * whitespace + subset[i].text.content;
|
|
}
|
|
|
|
return reconstruction;
|
|
}
|
|
|
|
static Lemma _getLemmas(String text, dynamic json) {
|
|
if (json != null) {
|
|
// July 24, 2024 - we're changing from a list to a single lemma and this is for backwards compatibility
|
|
// previously sent tokens have lists of lemmas
|
|
if (json is Iterable) {
|
|
return json
|
|
.map<Lemma>(
|
|
(e) => Lemma.fromJson(e as Map<String, dynamic>),
|
|
)
|
|
.toList()
|
|
.cast<Lemma>()
|
|
.firstOrNull ??
|
|
Lemma(text: text, saveVocab: false, form: text);
|
|
} else {
|
|
return Lemma.fromJson(json);
|
|
}
|
|
} else {
|
|
// earlier still, we didn't have lemmas so this is for really old tokens
|
|
return Lemma(text: text, saveVocab: false, form: text);
|
|
}
|
|
}
|
|
|
|
factory PangeaToken.fromJson(Map<String, dynamic> json) {
|
|
final PangeaTokenText text =
|
|
PangeaTokenText.fromJson(json[_textKey] as Map<String, dynamic>);
|
|
return PangeaToken(
|
|
text: text,
|
|
lemma: _getLemmas(text.content, json[_lemmaKey]),
|
|
pos: json['pos'] ?? '',
|
|
morph: json['morph'] ?? {},
|
|
);
|
|
}
|
|
|
|
static const String _textKey = "text";
|
|
static const String _lemmaKey = ModelKey.lemma;
|
|
|
|
Map<String, dynamic> toJson() => {
|
|
_textKey: text.toJson(),
|
|
_lemmaKey: [lemma.toJson()],
|
|
'pos': pos,
|
|
'morph': morph,
|
|
};
|
|
|
|
/// alias for the offset
|
|
int get start => text.offset;
|
|
|
|
/// alias for the end of the token ie offset + length
|
|
int get end => text.offset + text.length;
|
|
|
|
bool get isContentWord =>
|
|
["NOUN", "VERB", "ADJ", "ADV"].contains(pos) && lemma.saveVocab;
|
|
|
|
String get analyticsDebugPrint =>
|
|
"content: ${text.content} isContentWord: $isContentWord total_xp:$xp vocab_construct_xp: ${vocabConstruct.points} daysSincelastUseInWordMeaning ${daysSinceLastUseByType(ActivityTypeEnum.wordMeaning)}";
|
|
|
|
bool get canBeDefined =>
|
|
[
|
|
"ADJ",
|
|
"ADP",
|
|
"ADV",
|
|
"AUX",
|
|
"CCONJ",
|
|
"DET",
|
|
"INTJ",
|
|
"NOUN",
|
|
"NUM",
|
|
"PRON",
|
|
"SCONJ",
|
|
"VERB",
|
|
].contains(pos) &&
|
|
lemma.saveVocab;
|
|
|
|
bool get canBeHeard =>
|
|
[
|
|
"ADJ",
|
|
"ADV",
|
|
"AUX",
|
|
"DET",
|
|
"INTJ",
|
|
"NOUN",
|
|
"NUM",
|
|
"PRON",
|
|
"PROPN",
|
|
"SCONJ",
|
|
"VERB",
|
|
].contains(pos) &&
|
|
lemma.saveVocab;
|
|
|
|
/// Given a [type] and [metadata], returns a [OneConstructUse] for this lemma
|
|
OneConstructUse toVocabUse(
|
|
ConstructUseTypeEnum type,
|
|
ConstructUseMetaData metadata,
|
|
) {
|
|
return OneConstructUse(
|
|
useType: type,
|
|
lemma: lemma.text,
|
|
form: text.content,
|
|
constructType: ConstructTypeEnum.vocab,
|
|
metadata: metadata,
|
|
category: pos,
|
|
);
|
|
}
|
|
|
|
bool isActivityBasicallyEligible(
|
|
ActivityTypeEnum a, [
|
|
String? morphFeature,
|
|
String? morphTag,
|
|
]) {
|
|
if (!lemma.saveVocab) {
|
|
return false;
|
|
}
|
|
|
|
bool canGenerate = false;
|
|
if (a != ActivityTypeEnum.lemmaId) {
|
|
canGenerate = _canGenerateDistractors(
|
|
a,
|
|
morphFeature: morphFeature,
|
|
morphTag: morphTag,
|
|
);
|
|
}
|
|
|
|
switch (a) {
|
|
case ActivityTypeEnum.wordMeaning:
|
|
return canBeDefined && canGenerate;
|
|
case ActivityTypeEnum.lemmaId:
|
|
return lemma.saveVocab &&
|
|
text.content.toLowerCase() != lemma.text.toLowerCase();
|
|
case ActivityTypeEnum.emoji:
|
|
return true;
|
|
case ActivityTypeEnum.morphId:
|
|
return morph.isNotEmpty && canGenerate;
|
|
case ActivityTypeEnum.wordFocusListening:
|
|
case ActivityTypeEnum.hiddenWordListening:
|
|
return canBeHeard;
|
|
}
|
|
}
|
|
|
|
// bool _didActivity(
|
|
// ActivityTypeEnum a, [
|
|
// String? morphFeature,
|
|
// String? morphTag,
|
|
// ]) {
|
|
// if ((morphFeature == null || morphTag == null) &&
|
|
// a == ActivityTypeEnum.morphId) {
|
|
// debugger(when: kDebugMode);
|
|
// return true;
|
|
// }
|
|
// switch (a) {
|
|
// case ActivityTypeEnum.wordMeaning:
|
|
// case ActivityTypeEnum.wordFocusListening:
|
|
// case ActivityTypeEnum.hiddenWordListening:
|
|
// case ActivityTypeEnum.lemmaId:
|
|
// case ActivityTypeEnum.emoji:
|
|
// return vocabConstruct.uses
|
|
// .map((u) => u.useType)
|
|
// .any((u) => a.associatedUseTypes.contains(u));
|
|
// case ActivityTypeEnum.morphId:
|
|
// return morph.entries
|
|
// .map((e) => morphConstruct(morphFeature!, morphTag!).uses)
|
|
// .expand((e) => e)
|
|
// .any(
|
|
// (u) =>
|
|
// a.associatedUseTypes.contains(u.useType) &&
|
|
// u.form == text.content,
|
|
// );
|
|
// }
|
|
// }
|
|
|
|
bool didActivitySuccessfully(
|
|
ActivityTypeEnum a, [
|
|
String? morphFeature,
|
|
String? morphTag,
|
|
]) {
|
|
if ((morphFeature == null || morphTag == null) &&
|
|
a == ActivityTypeEnum.morphId) {
|
|
debugger(when: kDebugMode);
|
|
return true;
|
|
}
|
|
switch (a) {
|
|
case ActivityTypeEnum.wordMeaning:
|
|
case ActivityTypeEnum.wordFocusListening:
|
|
case ActivityTypeEnum.hiddenWordListening:
|
|
case ActivityTypeEnum.lemmaId:
|
|
case ActivityTypeEnum.emoji:
|
|
return vocabConstruct.uses
|
|
.map((u) => u.useType)
|
|
.any((u) => u == a.correctUse);
|
|
// Note that it matters less if they did morphId in general, than if they did it with the particular feature
|
|
case ActivityTypeEnum.morphId:
|
|
if (morphFeature == null || morphTag == null) {
|
|
debugger(when: kDebugMode);
|
|
return false;
|
|
}
|
|
return morphConstruct(morphFeature, morphTag)
|
|
.uses
|
|
.any((u) => u.useType == a.correctUse && u.form == text.content);
|
|
}
|
|
}
|
|
|
|
bool _isActivityProbablyLevelAppropriate(
|
|
ActivityTypeEnum a, [
|
|
String? morphFeature,
|
|
String? morphTag,
|
|
]) {
|
|
switch (a) {
|
|
case ActivityTypeEnum.wordMeaning:
|
|
if (daysSinceLastUseByType(ActivityTypeEnum.wordMeaning) < 7) {
|
|
return false;
|
|
}
|
|
|
|
if (isContentWord) {
|
|
return vocabConstruct.points < 3;
|
|
} else if (canBeDefined) {
|
|
return vocabConstruct.points < 1;
|
|
} else {
|
|
return false;
|
|
}
|
|
case ActivityTypeEnum.wordFocusListening:
|
|
return !didActivitySuccessfully(a) || daysSinceLastUseByType(a) > 30;
|
|
case ActivityTypeEnum.hiddenWordListening:
|
|
return daysSinceLastUseByType(a) > 7;
|
|
case ActivityTypeEnum.lemmaId:
|
|
return false;
|
|
// disabling lemma activities for now
|
|
// It has 2 purposes:• learning value• triangulating our determination of the lemma with
|
|
// AI plus user verification.However, displaying the lemma during the meaning activity helps
|
|
// disambiguate what the meaning activity is about. This is probably more valuable than the
|
|
// lemma activity itself. The piping for the lemma activity will stay there if we want to turn
|
|
//it back on, maybe in select instances.
|
|
// return _didActivitySuccessfully(ActivityTypeEnum.wordMeaning) &&
|
|
// daysSinceLastUseByType(a) > 7;
|
|
case ActivityTypeEnum.emoji:
|
|
return true;
|
|
case ActivityTypeEnum.morphId:
|
|
if (morphFeature == null || morphTag == null) {
|
|
debugger(when: kDebugMode);
|
|
return false;
|
|
}
|
|
return daysSinceLastUseMorph(morphFeature, morphTag) > 1 &&
|
|
morphConstruct(morphFeature, morphTag).points < 5;
|
|
}
|
|
}
|
|
|
|
bool get shouldDoPosActivity => shouldDoMorphActivity("pos");
|
|
|
|
bool shouldDoMorphActivity(String feature) {
|
|
return shouldDoActivity(
|
|
a: ActivityTypeEnum.morphId,
|
|
feature: feature,
|
|
tag: getMorphTag(feature),
|
|
);
|
|
}
|
|
|
|
/// Safely get morph tag for a given feature without regard for case
|
|
String? getMorphTag(String feature) {
|
|
if (morph.containsKey(feature)) return morph[feature];
|
|
if (morph.containsKey(feature.toLowerCase())) {
|
|
return morph[feature.toLowerCase()];
|
|
}
|
|
final lowerCaseEntries = morph.entries.map(
|
|
(e) => MapEntry(e.key.toLowerCase(), e.value),
|
|
);
|
|
return lowerCaseEntries
|
|
.firstWhereOrNull(
|
|
(e) => e.key == feature.toLowerCase(),
|
|
)
|
|
?.value;
|
|
}
|
|
|
|
/// Syncronously determine if a distractor can be generated for a given activity type.
|
|
/// WARNING - do not use this function to determine if lemma activities can be generated.
|
|
/// Use [canGenerateLemmaDistractors] instead.
|
|
bool _canGenerateDistractors(
|
|
ActivityTypeEnum type, {
|
|
String? morphFeature,
|
|
String? morphTag,
|
|
}) {
|
|
switch (type) {
|
|
case ActivityTypeEnum.lemmaId:
|
|
// the function to determine this for lemmas is async
|
|
// do not use this function for lemma activities
|
|
debugger(when: kDebugMode);
|
|
return false;
|
|
case ActivityTypeEnum.morphId:
|
|
final distractors = morphActivityDistractors(
|
|
morphFeature!,
|
|
morphTag!,
|
|
);
|
|
return distractors.isNotEmpty;
|
|
case ActivityTypeEnum.wordMeaning:
|
|
return LemmaMeaningActivityGenerator.canGenerateDistractors(
|
|
lemma.text,
|
|
pos,
|
|
);
|
|
case ActivityTypeEnum.emoji:
|
|
case ActivityTypeEnum.wordFocusListening:
|
|
case ActivityTypeEnum.hiddenWordListening:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Future<bool> canGenerateLemmaDistractors() async {
|
|
final distractors =
|
|
await LemmaActivityGenerator().lemmaActivityDistractors(this);
|
|
return distractors.isNotEmpty;
|
|
}
|
|
|
|
// maybe for every 5 points of xp for a particular activity, increment the days between uses by 2
|
|
bool shouldDoActivity({
|
|
required ActivityTypeEnum a,
|
|
required String? feature,
|
|
required String? tag,
|
|
}) {
|
|
return isActivityBasicallyEligible(a, feature, tag) &&
|
|
_isActivityProbablyLevelAppropriate(a, feature, tag);
|
|
}
|
|
|
|
List<ActivityTypeEnum> get eligibleActivityTypes {
|
|
final List<ActivityTypeEnum> eligibleActivityTypes = [];
|
|
|
|
if (!lemma.saveVocab) {
|
|
return eligibleActivityTypes;
|
|
}
|
|
|
|
for (final type in ActivityTypeEnum.values) {
|
|
if (shouldDoActivity(a: type, feature: null, tag: null)) {
|
|
eligibleActivityTypes.add(type);
|
|
}
|
|
}
|
|
|
|
return eligibleActivityTypes;
|
|
}
|
|
|
|
ConstructUses get vocabConstruct =>
|
|
MatrixState.pangeaController.getAnalytics.constructListModel
|
|
.getConstructUses(
|
|
ConstructIdentifier(
|
|
lemma: lemma.text,
|
|
type: ConstructTypeEnum.vocab,
|
|
category: pos,
|
|
),
|
|
) ??
|
|
ConstructUses(
|
|
lemma: lemma.text,
|
|
constructType: ConstructTypeEnum.vocab,
|
|
category: pos,
|
|
uses: [],
|
|
);
|
|
|
|
ConstructUses morphConstruct(String morphFeature, String morphTag) =>
|
|
MatrixState.pangeaController.getAnalytics.constructListModel
|
|
.getConstructUses(
|
|
ConstructIdentifier(
|
|
lemma: morphTag,
|
|
type: ConstructTypeEnum.morph,
|
|
category: morphFeature,
|
|
),
|
|
) ??
|
|
ConstructUses(
|
|
lemma: morphTag,
|
|
constructType: ConstructTypeEnum.morph,
|
|
category: morphFeature,
|
|
uses: [],
|
|
);
|
|
|
|
int get xp {
|
|
return constructs.fold<int>(
|
|
0,
|
|
(previousValue, element) => previousValue + element.points,
|
|
);
|
|
}
|
|
|
|
/// lastUsed by activity type
|
|
DateTime? _lastUsedByActivityType(ActivityTypeEnum a) {
|
|
final List<ConstructUses> filteredConstructs =
|
|
constructs.where((c) => a.constructFilter(c.id)).toList();
|
|
final correctUseTimestamps = filteredConstructs
|
|
.expand((c) => c.uses)
|
|
.where((u) => u.useType == a.correctUse)
|
|
.map((u) => u.timeStamp)
|
|
.toList();
|
|
|
|
if (correctUseTimestamps.isEmpty) return null;
|
|
|
|
// return the most recent timestamp
|
|
return correctUseTimestamps.reduce((a, b) => a.isAfter(b) ? a : b);
|
|
}
|
|
|
|
/// daysSinceLastUse by activity type
|
|
int daysSinceLastUseByType(ActivityTypeEnum a) {
|
|
final lastUsed = _lastUsedByActivityType(a);
|
|
if (lastUsed == null) return 1000;
|
|
return DateTime.now().difference(lastUsed).inDays;
|
|
}
|
|
|
|
int daysSinceLastUseMorph(String morphFeature, String morphTag) {
|
|
final lastUsed = morphConstruct(morphFeature, morphTag).lastUsed;
|
|
if (lastUsed == null) return 1000;
|
|
return DateTime.now().difference(lastUsed).inDays;
|
|
}
|
|
|
|
List<ConstructIdentifier> get _constructIDs {
|
|
final List<ConstructIdentifier> ids = [];
|
|
ids.add(
|
|
ConstructIdentifier(
|
|
lemma: lemma.text,
|
|
type: ConstructTypeEnum.vocab,
|
|
category: pos,
|
|
),
|
|
);
|
|
for (final morph in morph.entries) {
|
|
ids.add(
|
|
ConstructIdentifier(
|
|
lemma: morph.value,
|
|
type: ConstructTypeEnum.morph,
|
|
category: morph.key,
|
|
),
|
|
);
|
|
}
|
|
return ids;
|
|
}
|
|
|
|
List<ConstructUses> get constructs => _constructIDs
|
|
.map(
|
|
(id) => MatrixState.pangeaController.getAnalytics.constructListModel
|
|
.getConstructUses(id),
|
|
)
|
|
.where((construct) => construct != null)
|
|
.cast<ConstructUses>()
|
|
.toList();
|
|
|
|
Map<String, dynamic> toServerChoiceTokenWithXP() {
|
|
return {
|
|
'token': toJson(),
|
|
'constructs_with_xp': constructs.map((e) => e.toJson()).toList(),
|
|
'target_types': eligibleActivityTypes.map((e) => e.string).toList(),
|
|
};
|
|
}
|
|
|
|
Future<List<String>> getEmojiChoices() => LemmaInfoRepo.get(
|
|
LemmaInfoRequest(
|
|
lemma: lemma.text,
|
|
partOfSpeech: pos,
|
|
lemmaLang: MatrixState
|
|
.pangeaController.languageController.userL2?.langCode ??
|
|
LanguageKeys.unknownLanguage,
|
|
userL1: MatrixState
|
|
.pangeaController.languageController.userL1?.langCode ??
|
|
LanguageKeys.defaultLanguage,
|
|
),
|
|
).then((onValue) => onValue.emoji);
|
|
|
|
ConstructIdentifier get vocabConstructID => ConstructIdentifier(
|
|
lemma: lemma.text,
|
|
type: ConstructTypeEnum.vocab,
|
|
category: pos,
|
|
);
|
|
|
|
/// [setEmoji] sets the emoji for the lemma
|
|
/// NOTE: assumes that the language of the lemma is the same as the user's current l2
|
|
Future<void> setEmoji(String emoji) async {
|
|
final analyticsRoom =
|
|
MatrixState.pangeaController.matrixState.client.analyticsRoomLocal();
|
|
if (analyticsRoom == null) return;
|
|
try {
|
|
final client = MatrixState.pangeaController.matrixState.client;
|
|
final syncFuture = client.onRoomState.stream.firstWhere((event) {
|
|
return event.roomId == analyticsRoom.id &&
|
|
event.state.type == PangeaEventTypes.userChosenEmoji;
|
|
});
|
|
client.setRoomStateWithKey(
|
|
analyticsRoom.id,
|
|
PangeaEventTypes.userChosenEmoji,
|
|
vocabConstructID.string,
|
|
{ModelKey.emoji: emoji},
|
|
);
|
|
await syncFuture;
|
|
} catch (err, s) {
|
|
debugger(when: kDebugMode);
|
|
ErrorHandler.logError(
|
|
e: err,
|
|
data: {
|
|
"construct": vocabConstructID.string,
|
|
"emoji": emoji,
|
|
},
|
|
s: s,
|
|
);
|
|
}
|
|
}
|
|
|
|
/// [getEmoji] gets the emoji for the lemma
|
|
/// NOTE: assumes that the language of the lemma is the same as the user's current l2
|
|
String? getEmoji() {
|
|
final analyticsRoom =
|
|
MatrixState.pangeaController.matrixState.client.analyticsRoomLocal();
|
|
return analyticsRoom
|
|
?.getState(PangeaEventTypes.userChosenEmoji, vocabConstructID.string)
|
|
?.content
|
|
.tryGet<String>(ModelKey.emoji);
|
|
}
|
|
|
|
String get xpEmoji {
|
|
if (vocabConstruct.points < 30) {
|
|
// bean emoji
|
|
return "🫛";
|
|
} else if (vocabConstruct.points < 100) {
|
|
// sprout emoji
|
|
return "🌱";
|
|
} else {
|
|
// flower emoji
|
|
return "🌺";
|
|
}
|
|
}
|
|
|
|
List<String> morphActivityDistractors(
|
|
String morphFeature,
|
|
String morphTag,
|
|
) {
|
|
final List<ConstructUses> morphConstructs = MatrixState
|
|
.pangeaController.getAnalytics.constructListModel
|
|
.constructList(type: ConstructTypeEnum.morph);
|
|
final List<String> possibleDistractors = morphConstructs
|
|
.where(
|
|
(c) =>
|
|
c.category == morphFeature.toLowerCase() &&
|
|
c.lemma.toLowerCase() != morphTag.toLowerCase() &&
|
|
c.lemma.isNotEmpty &&
|
|
c.lemma != "X",
|
|
)
|
|
.map((c) => c.lemma)
|
|
.toList();
|
|
|
|
possibleDistractors.shuffle();
|
|
return possibleDistractors.take(3).toList();
|
|
}
|
|
}
|