You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
depot_tools/third_party/logilab/astroid/protocols.py

471 lines
17 KiB
Python

# copyright 2003-2013 LOGILAB S.A. (Paris, FRANCE), all rights reserved.
# contact http://www.logilab.fr/ -- mailto:contact@logilab.fr
#
# This file is part of astroid.
#
# astroid is free software: you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 2.1 of the License, or (at your
# option) any later version.
#
# astroid is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
# for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with astroid. If not, see <http://www.gnu.org/licenses/>.
"""this module contains a set of functions to handle python protocols for nodes
where it makes sense.
"""
import collections
import operator
import sys
from astroid import arguments
from astroid import bases
from astroid import context as contextmod
from astroid import exceptions
from astroid import node_classes
from astroid import nodes
from astroid import util
BIN_OP_METHOD = {'+': '__add__',
'-': '__sub__',
'/': '__div__',
'//': '__floordiv__',
'*': '__mul__',
'**': '__pow__',
'%': '__mod__',
'&': '__and__',
'|': '__or__',
'^': '__xor__',
'<<': '__lshift__',
'>>': '__rshift__',
'@': '__matmul__'
}
UNARY_OP_METHOD = {'+': '__pos__',
'-': '__neg__',
'~': '__invert__',
'not': None, # XXX not '__nonzero__'
}
# unary operations ############################################################
def tl_infer_unary_op(self, operator):
if operator == 'not':
return node_classes.const_factory(not bool(self.elts))
raise TypeError() # XXX log unsupported operation
nodes.Tuple.infer_unary_op = tl_infer_unary_op
nodes.List.infer_unary_op = tl_infer_unary_op
def dict_infer_unary_op(self, operator):
if operator == 'not':
return node_classes.const_factory(not bool(self.items))
raise TypeError() # XXX log unsupported operation
nodes.Dict.infer_unary_op = dict_infer_unary_op
def const_infer_unary_op(self, operator):
if operator == 'not':
return node_classes.const_factory(not self.value)
# XXX log potentially raised TypeError
elif operator == '+':
return node_classes.const_factory(+self.value)
else: # operator == '-':
return node_classes.const_factory(-self.value)
nodes.Const.infer_unary_op = const_infer_unary_op
# binary operations ###########################################################
BIN_OP_IMPL = {'+': lambda a, b: a + b,
'-': lambda a, b: a - b,
'/': lambda a, b: a / b,
'//': lambda a, b: a // b,
'*': lambda a, b: a * b,
'**': lambda a, b: a ** b,
'%': lambda a, b: a % b,
'&': lambda a, b: a & b,
'|': lambda a, b: a | b,
'^': lambda a, b: a ^ b,
'<<': lambda a, b: a << b,
'>>': lambda a, b: a >> b,
}
if sys.version_info >= (3, 5):
# MatMult is available since Python 3.5+.
BIN_OP_IMPL['@'] = operator.matmul
for key, impl in list(BIN_OP_IMPL.items()):
BIN_OP_IMPL[key+'='] = impl
def const_infer_binary_op(self, binop, other, context):
operator = binop.op
for other in other.infer(context):
if isinstance(other, nodes.Const):
try:
impl = BIN_OP_IMPL[operator]
try:
yield node_classes.const_factory(impl(self.value, other.value))
except Exception:
# ArithmeticError is not enough: float >> float is a TypeError
# TODO : let pylint know about the problem
pass
except TypeError:
# XXX log TypeError
continue
elif other is util.YES:
yield other
else:
try:
for val in other.infer_binary_op(binop, self, context):
yield val
except AttributeError:
yield util.YES
nodes.Const.infer_binary_op = bases.yes_if_nothing_inferred(const_infer_binary_op)
def _multiply_seq_by_int(self, binop, other, context):
node = self.__class__()
node.parent = binop
elts = []
for elt in self.elts:
infered = util.safe_infer(elt, context)
if infered is None:
infered = util.YES
elts.append(infered)
node.elts = elts * other.value
return node
def _filter_uninferable_nodes(elts, context):
for elt in elts:
if elt is util.YES:
yield elt
else:
for inferred in elt.infer(context):
yield inferred
def tl_infer_binary_op(self, binop, other, context):
operator = binop.op
for other in other.infer(context):
if isinstance(other, self.__class__) and operator == '+':
node = self.__class__()
node.parent = binop
elts = list(_filter_uninferable_nodes(self.elts, context))
elts += list(_filter_uninferable_nodes(other.elts, context))
node.elts = elts
yield node
elif isinstance(other, nodes.Const) and operator == '*':
if not isinstance(other.value, int):
yield util.YES
continue
yield _multiply_seq_by_int(self, binop, other, context)
elif isinstance(other, bases.Instance) and not isinstance(other, nodes.Const):
yield util.YES
# XXX else log TypeError
nodes.Tuple.infer_binary_op = bases.yes_if_nothing_inferred(tl_infer_binary_op)
nodes.List.infer_binary_op = bases.yes_if_nothing_inferred(tl_infer_binary_op)
def dict_infer_binary_op(self, binop, other, context):
for other in other.infer(context):
if isinstance(other, bases.Instance) and isinstance(other._proxied, nodes.ClassDef):
yield util.YES
# XXX else log TypeError
nodes.Dict.infer_binary_op = bases.yes_if_nothing_inferred(dict_infer_binary_op)
def instance_infer_binary_op(self, binop, other, context):
operator = binop.op
try:
methods = self.getattr(BIN_OP_METHOD[operator])
except (exceptions.NotFoundError, KeyError):
# Unknown operator
yield util.YES
else:
for method in methods:
if not isinstance(method, nodes.FunctionDef):
continue
for result in method.infer_call_result(self, context):
if result is not util.YES:
yield result
# We are interested only in the first infered method,
# don't go looking in the rest of the methods of the ancestors.
break
bases.Instance.infer_binary_op = bases.yes_if_nothing_inferred(instance_infer_binary_op)
# assignment ##################################################################
"""the assigned_stmts method is responsible to return the assigned statement
(e.g. not inferred) according to the assignment type.
The `asspath` argument is used to record the lhs path of the original node.
For instance if we want assigned statements for 'c' in 'a, (b,c)', asspath
will be [1, 1] once arrived to the Assign node.
The `context` argument is the current inference context which should be given
to any intermediary inference necessary.
"""
def _resolve_looppart(parts, asspath, context):
"""recursive function to resolve multiple assignments on loops"""
asspath = asspath[:]
index = asspath.pop(0)
for part in parts:
if part is util.YES:
continue
# XXX handle __iter__ and log potentially detected errors
if not hasattr(part, 'itered'):
continue
try:
itered = part.itered()
except TypeError:
continue # XXX log error
for stmt in itered:
try:
assigned = stmt.getitem(index, context)
except (AttributeError, IndexError):
continue
except TypeError: # stmt is unsubscriptable Const
continue
if not asspath:
# we achieved to resolved the assignment path,
# don't infer the last part
yield assigned
elif assigned is util.YES:
break
else:
# we are not yet on the last part of the path
# search on each possibly inferred value
try:
for inferred in _resolve_looppart(assigned.infer(context),
asspath, context):
yield inferred
except exceptions.InferenceError:
break
@bases.raise_if_nothing_inferred
def for_assigned_stmts(self, node=None, context=None, asspath=None):
if asspath is None:
for lst in self.iter.infer(context):
if isinstance(lst, (nodes.Tuple, nodes.List)):
for item in lst.elts:
yield item
else:
for inferred in _resolve_looppart(self.iter.infer(context),
asspath, context):
yield inferred
nodes.For.assigned_stmts = for_assigned_stmts
nodes.Comprehension.assigned_stmts = for_assigned_stmts
def sequence_assigned_stmts(self, node=None, context=None, asspath=None):
if asspath is None:
asspath = []
try:
index = self.elts.index(node)
except ValueError:
util.reraise(exceptions.InferenceError(
'Tried to retrieve a node {node!r} which does not exist',
node=self, assign_path=asspath, context=context))
asspath.insert(0, index)
return self.parent.assigned_stmts(node=self, context=context, asspath=asspath)
nodes.Tuple.assigned_stmts = sequence_assigned_stmts
nodes.List.assigned_stmts = sequence_assigned_stmts
def assend_assigned_stmts(self, node=None, context=None, asspath=None):
return self.parent.assigned_stmts(node=self, context=context)
nodes.AssignName.assigned_stmts = assend_assigned_stmts
nodes.AssignAttr.assigned_stmts = assend_assigned_stmts
def _arguments_infer_argname(self, name, context):
# arguments information may be missing, in which case we can't do anything
# more
if not (self.args or self.vararg or self.kwarg):
yield util.YES
return
# first argument of instance/class method
if self.args and getattr(self.args[0], 'name', None) == name:
functype = self.parent.type
if functype == 'method':
yield bases.Instance(self.parent.parent.frame())
return
if functype == 'classmethod':
yield self.parent.parent.frame()
return
if context and context.callcontext:
call_site = arguments.CallSite(context.callcontext)
for value in call_site.infer_argument(self.parent, name, context):
yield value
return
# TODO: just provide the type here, no need to have an empty Dict.
if name == self.vararg:
vararg = node_classes.const_factory(())
vararg.parent = self
yield vararg
return
if name == self.kwarg:
kwarg = node_classes.const_factory({})
kwarg.parent = self
yield kwarg
return
# if there is a default value, yield it. And then yield YES to reflect
# we can't guess given argument value
try:
context = contextmod.copy_context(context)
for inferred in self.default_value(name).infer(context):
yield inferred
yield util.YES
except exceptions.NoDefault:
yield util.YES
def arguments_assigned_stmts(self, node=None, context=None, asspath=None):
if context.callcontext:
# reset call context/name
callcontext = context.callcontext
context = contextmod.copy_context(context)
context.callcontext = None
args = arguments.CallSite(callcontext)
return args.infer_argument(self.parent, node.name, context)
return _arguments_infer_argname(self, node.name, context)
nodes.Arguments.assigned_stmts = arguments_assigned_stmts
@bases.raise_if_nothing_inferred
def assign_assigned_stmts(self, node=None, context=None, asspath=None):
if not asspath:
yield self.value
return
for inferred in _resolve_asspart(self.value.infer(context), asspath, context):
yield inferred
nodes.Assign.assigned_stmts = assign_assigned_stmts
nodes.AugAssign.assigned_stmts = assign_assigned_stmts
def _resolve_asspart(parts, asspath, context):
"""recursive function to resolve multiple assignments"""
asspath = asspath[:]
index = asspath.pop(0)
for part in parts:
if hasattr(part, 'getitem'):
try:
assigned = part.getitem(index, context)
# XXX raise a specific exception to avoid potential hiding of
# unexpected exception ?
except (TypeError, IndexError):
return
if not asspath:
# we achieved to resolved the assignment path, don't infer the
# last part
yield assigned
elif assigned is util.YES:
return
else:
# we are not yet on the last part of the path search on each
# possibly inferred value
try:
for inferred in _resolve_asspart(assigned.infer(context),
asspath, context):
yield inferred
except exceptions.InferenceError:
return
@bases.raise_if_nothing_inferred
def excepthandler_assigned_stmts(self, node=None, context=None, asspath=None):
for assigned in node_classes.unpack_infer(self.type):
if isinstance(assigned, nodes.ClassDef):
assigned = bases.Instance(assigned)
yield assigned
nodes.ExceptHandler.assigned_stmts = bases.raise_if_nothing_inferred(excepthandler_assigned_stmts)
@bases.raise_if_nothing_inferred
def with_assigned_stmts(self, node=None, context=None, asspath=None):
if asspath is None:
for _, vars in self.items:
if vars is None:
continue
for lst in vars.infer(context):
if isinstance(lst, (nodes.Tuple, nodes.List)):
for item in lst.nodes:
yield item
nodes.With.assigned_stmts = with_assigned_stmts
@bases.yes_if_nothing_inferred
def starred_assigned_stmts(self, node=None, context=None, asspath=None):
stmt = self.statement()
if not isinstance(stmt, (nodes.Assign, nodes.For)):
raise exceptions.InferenceError()
if isinstance(stmt, nodes.Assign):
value = stmt.value
lhs = stmt.targets[0]
if sum(1 for node in lhs.nodes_of_class(nodes.Starred)) > 1:
# Too many starred arguments in the expression.
raise exceptions.InferenceError()
if context is None:
context = contextmod.InferenceContext()
try:
rhs = next(value.infer(context))
except exceptions.InferenceError:
yield util.YES
return
if rhs is util.YES or not hasattr(rhs, 'elts'):
# Not interested in inferred values without elts.
yield util.YES
return
elts = collections.deque(rhs.elts[:])
if len(lhs.elts) > len(rhs.elts):
# a, *b, c = (1, 2)
raise exceptions.InferenceError()
# Unpack iteratively the values from the rhs of the assignment,
# until the find the starred node. What will remain will
# be the list of values which the Starred node will represent
# This is done in two steps, from left to right to remove
# anything before the starred node and from right to left
# to remvoe anything after the starred node.
for index, node in enumerate(lhs.elts):
if not isinstance(node, nodes.Starred):
elts.popleft()
continue
lhs_elts = collections.deque(reversed(lhs.elts[index:]))
for node in lhs_elts:
if not isinstance(node, nodes.Starred):
elts.pop()
continue
# We're done
packed = nodes.List()
packed.elts = elts
packed.parent = self
yield packed
break
nodes.Starred.assigned_stmts = starred_assigned_stmts